3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Spectral theory of self-adjoint higher order differential operators with eigenvalue parameter dependent boundary conditions
    (2012-09-05) Zinsou, Bertin
    We consider on the interval [0; a], rstly fourth-order di erential operators with eigenvalue parameter dependent boundary conditions and secondly a sixth-order di erential operator with eigenvalue parameter dependent boundary conditions. We associate to each of these problems a quadratic operator pencil with self-adjoint operators. We investigate the spectral proprieties of these problems, the location of the eigenvalues and we explicitly derive the rst four terms of the eigenvalue asymptotics.
  • Item
    Self-adjoint fourth order differential operators with eigenvalue parameter dependent boundary conditions
    (2009-09-14T08:40:01Z) Zinsou, Bertin
    The eigenvalue problem y(4)(¸; x) ¡ (gy0)0(¸; x) = ¸2y(¸; x) with boundary conditions y(¸; 0) = 0; y00(¸; 0) = 0; y(¸; a) = 0; y00(¸; a) + i®¸y0(¸; a) = 0; where g 2 C1[0; a] is a real valued function and ® > 0, has an operator pencil L(¸) = ¸2 ¡ i®¸K ¡ A realization with self-adjoint operators A, M and K. It was shown that the spectrum for the above boundary eigenvalue problem is located in the upper-half plane and on the imaginary axis. This is due to the fact that A, M and K are self-adjoint. We consider the eigenvalue problem y(4)(¸; x) ¡ (gy0)0(¸; x) = ¸2y(¸; x) with more general ¸-dependent separated boundary conditions Bj(¸)y = 0 for j = 1; ¢ ¢ ¢ ; 4 where Bj(¸)y = y[pj ](aj) or Bj(¸)y = y[pj ](aj) + i²j®¸y[qj ](aj), aj = 0 for j = 1; 2 and aj = a for j = 3; 4, ® > 0, ²j = ¡1 or ²j = 1. We assume that at least one of the B1(¸)y = 0, B2(¸)y = 0, B3(¸)y = 0, B4(¸)y = 0 is of the form y[p](0)+i²®¸y[q](0) = 0 or y[p](a)+i²®¸y[q](a) = 0 and we investigate classes of boundary conditions for which the corresponding operator A is self-adjoint.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.