3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Evaluating efficiency of ensemble classifiers in predicting the JSE all-share index attitude
    (2017) Ramsumar, Shaun
    The prediction of stock price and index level in a financial market is an interesting but highly complex and intricate topic. Advancements in prediction models leading to even a slight increase in performance can be very profitable. The number of studies investigating models in predicting actual levels of stocks and indices however, far exceed those predicting the direction of stocks and indices. This study evaluates the performance of ensemble prediction models in predicting the daily direction of the JSE All-Share index. The ensemble prediction models are benchmarked against three common prediction models in the domain of financial data prediction namely, support vector machines, logistic regression and k-nearest neighbour. The results indicate that the Boosted algorithm of the ensemble prediction model is able to predict the index direction the best, followed by k-nearest neighbour, logistic regression and support vector machines respectively. The study suggests that ensemble models be considered in all stock price and index prediction applications.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.