3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    American Option Pricing Using Computational Intelligence Methods
    (2006-03-22) Pires, Michael Maio
    An option is the right to buy or sell an underlying asset at a future date by fixing the price now. The field of option pricing produces a challenge because of the complexity with pricing American styled options which cannot be done by the Black-Scholes equations. Neural Networks and Machine Learning techniques are predictors based on past data and it is intuitive to believe that they can model American options as they are non-linear instruments. Call option data on the South African All Share Index (ALSI) was used for testing of the techniques. These two different techniques were compared. What was also done was the comparison of Bayesian techniques applied to both the techniques. What this provided was confidence levels for the predictions. The investigations showed that Machine Learning techniques out-performed Neural Networks. The investigations also showed that there is scope for work to be done to improve the model.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.