3. Electronic Theses and Dissertations (ETDs) - All submissions

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Graphs and graph polynomials
    (2017) Kriel, Christo
    In this work we study the k-defect polynomials of a graph G. The k defect polynomial is a function in λ that gives the number of improper colourings of a graph using λ colours. The k-defect polynomials generate the bad colouring polynomial which is equivalent to the Tutte polynomial, hence their importance in a more general graph theoretic setting. By setting up a one-to-one correspondence between triangular numbers and complete graphs, we use number theoretical methods to study certain characteristics of the k-defect polynomials of complete graphs. Specifically we are able to generate an expression for any k-defect polynomial of a complete graph, determine integer intervals for k on which the k-defect polynomials for complete graphs are equal to zero and also determine a formula to calculate the minimum number of k-defect polynomials that are equal to zero for any complete graph.
Copyright Ownership Is Guided By The University's

Intellectual Property policy

Students submitting a Thesis or Dissertation must be aware of current copyright issues. Both for the protection of your original work as well as the protection of another's copyrighted work, you should follow all current copyright law.