3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
1 results
Search Results
Item Graphs and graph polynomials(2017) Kriel, ChristoIn this work we study the k-defect polynomials of a graph G. The k defect polynomial is a function in λ that gives the number of improper colourings of a graph using λ colours. The k-defect polynomials generate the bad colouring polynomial which is equivalent to the Tutte polynomial, hence their importance in a more general graph theoretic setting. By setting up a one-to-one correspondence between triangular numbers and complete graphs, we use number theoretical methods to study certain characteristics of the k-defect polynomials of complete graphs. Specifically we are able to generate an expression for any k-defect polynomial of a complete graph, determine integer intervals for k on which the k-defect polynomials for complete graphs are equal to zero and also determine a formula to calculate the minimum number of k-defect polynomials that are equal to zero for any complete graph.