3. Electronic Theses and Dissertations (ETDs) - All submissions
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/45
Browse
1 results
Search Results
Item Multi-pass deep Q-networks for reinforcement learning with parameterised action spaces(2019) Bester, Craig JamesParameterised actions in reinforcement learning are composed of discrete actions with continuous actionparameters. This provides a framework capable of solving complex domains that require learning highlevel action policies with flexible control. Recently, deep Q-networks have been extended to learn over such action spaces with the P-DQN algorithm. However, the method treats all action-parameters as a single joint input to the Q-network, invalidating its theoretical foundations. We demonstrate the disadvantages of this approach and propose two solutions: using split Q-networks, and a novel multi-pass technique. We also propose a weighted-indexed action-parameter loss function to address issues related to the imbalance of sampling and exploration between different parameterised actions. We empirically demonstrate that both our multi-pass algorithm and weighted-indexed loss significantly outperform P-DQN and other previous algorithms in terms of data efficiency and converged policy performance on the Platform, Robot Soccer Goal, and Half Field Offense domains.