Faculty of Science

Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/20140

For queries regarding content of Faculty of Science please contact Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Biological and geophysical feedbacks with fire in the Earth system
    (Environmental Research Letters, 2018-03-06) Archibald, S.; Lehmann, C.E.R.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.
    Roughly 3% of the Earth's land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels-namely plants and their litter-that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.
  • Thumbnail Image
    Item
    A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications
    (Copernicus GmbH, 2017-02) Brocklehurst, N.; Fröbisch, J.
    Phreatophasma aenigmaticum is a mysterious tetrapod from the earliest middle Permian of Russia, represented by a single femur. At various times since its original description it has been considered a therapsid synapsid, a pelycosaurian-grade synapsid from the family Caseidae, and most recently a seymouriamorph amphibian. Using up-to-date knowledge of the postcranial morphology and evolution of early synapsids, the specimen is re-evaluated and subjected to cladistic analysis. Seymouriamorph and therapsid affinities are rejected, and a caseid affinity is supported based on the deep intertrochanteric fossa; the widely spaced distal condyles; the short, robust femoral shaft; and the lack of a longitudinal ridge enclosing the posterior margin of the intertrochanteric fossa. When included in two cladistic matrices, the first a global analysis of basal synapsids and the second devoted to caseids, Phreatophasma is found to occupy a basal position within caseids, retaining plesiomorphic characters such as the lack of compression of the anterior condyle of the femur and the almost identical distal extent of the two condyles. The recognition of Phreatophasma as a basal caseid has great implications for the evolution and biogeography of this family. This is only the second example of a caseid from the palaeo-temperate region of Russia, and it is not closely related to the first (Ennatosaurus tecton), implying at least two distinct dispersal events from the palaeoequatorial to temperate latitudes. It also implies that a number of plesiomorphic characteristics of caseids, including small body size and a relatively long femur, were retained as late as the middle Permian, a time when caseids were otherwise represented by large herbivorous taxa.
  • Thumbnail Image
    Item
    Cranial bosses of choerosaurus dejageri (therapsida, therocephalia): Earliest evidence of cranial display structures in eutheriodonts.
    (Public Library of Science, 2016-08) Benoit, J.; Manger, P.R.; Fernandez, V.; Rubidge, B.S.
    Choerosaurus dejageri, a non-mammalian eutheriodont therapsid from the South African late Permian (∼259 Ma), has conspicuous hemispheric cranial bosses on the maxilla and the mandible. These bosses, the earliest of this nature in a eutheriodont, potentially make C. dejageri a key species for understanding the evolutionary origins of sexually selective behaviours (intraspecific competition, ritualized sexual and intimidation displays) associated with cranial outgrowths at the root of the clade that eventually led to extant mammals. Comparison with the tapinocephalid dinocephalian Moschops capensis, a therapsid in which head butting is strongly supported, shows that the delicate structure of the cranial bosses and the gracile structure of the skull of Choerosaurus would be more suitable for display and low energy combat than vigorous head butting. Thus, despite the fact that Choerosaurus is represented by only one skull (which makes it impossible to address the question of sexual dimorphism), its cranial bosses are better interpreted as structures involved in intraspecific selection, i.e. low-energy fighting or display. Display structures, such as enlarged canines and cranial bosses, are widespread among basal therapsid clades and are also present in the putative basal therapsid Tetraceratops insignis. This suggests that sexual selection may have played a more important role in the distant origin and evolution of mammals earlier than previously thought. Sexual selection may explain the subsequent independent evolution of cranial outgrowths and pachyostosis in different therapsid lineages (Biarmosuchia, Dinocephalia, Gorgonopsia and Dicynodontia).
  • Thumbnail Image
    Item
    Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type.
    (Ecological Society of America, 2015-10) Ripley, B.; Visser, V.; Christin, P.-A.; Martin, T.; Osborne, C.; Archibald, S.
    Grasses using the C4 photosynthetic pathway dominate frequently burned savannas, where the pathway is hypothesized to be adaptive. However, independent C4 lineages also sort among different fire environments. Adaptations to fire may thus depend on evolutionary history, which could be as important as the possession of the C4 photosynthetic pathway for life in these environments. Here, using a comparative pot experiment and controlled burn, we examined C3 and C4 grasses belonging to four lineages from the same regional flora, and asked the following questions: Do lineages differ in their responses to fire, are responses consistent between photosynthetic types, and are responses related to fire frequency in natural habitats? We found that in the C4 Andropogoneae lineage, frost killed a large proportion of aboveground biomass and produced a large dry fuel load, which meant that only a small fraction of the living tissue was lost in the fire. C3 species from the Paniceae and Danthonioideae lineages generated smaller fuel loads and lost more living biomass, while species from the C4 lineage Aristida generated the smallest fuel loads and lost the most living tissue. Regrowth after the fire was more rapid and complete in the C4 Andropogoneae and C3 Paniceae, but incomplete and slower in the C3 Danthonioideae and C4 Aristida. Rapid recovery was associated with high photosynthetic rates, high specific leaf area, delayed flowering, and frequent fires in natural habitats. Results demonstrated that phylogenetic lineage was more important than photosynthetic type in determining the fire response of these grasses and that fire responses were related to the frequency that natural habitats burned.