Faculty of Science
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/20140
For queries regarding content of Faculty of Science please contact Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
6 results
Search Results
Item Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μcT-scanning techniques.(Public Library of Science, 2017-02) Benoit, J.; Norton, L.A.; Manger, P.R.; Rubidge, B.S.Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a μCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face). The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa), a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa); and an apparatus with which to inflict a wound for venom delivery (the ridged dentition).Item Oxygen isotopes suggest elevated thermometabolism within multiple permo-triassic therapsid clades(eLife Sciences Publications Ltd, 2017-07) Rey, K.; Amiot, R.; Fourel, F.; Abdala, F.; Fluteau, F.; Jalil, N.-E.; Liu, J.; Rubidge, B.S.; Smith, R.M.H.; Steyer, J.S.; Viglietti, P.A.; Wang, X.; Lécuyer, C.The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (d18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the d18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism.Item Taphonomic analysis of the faunal assemblage associated with the hominins (Australopithecus sediba) from the early pleistocene cave deposits of Malapa, South Africa.(Public Library of Science, 2015-06-10) Val, A.; Dirks, P.H.G.M.; Backwell, L.R.; Berger, L.R.; D'Errico, F.Here we present the results of a taphonomic study of the faunal assemblage associated with the hominin fossils (Australopithecus sediba) from the Malapa site. Results include estimation of body part representation, mortality profiles, type of fragmentation, identification of breakage patterns, and microscopic analysis of bone surfaces. The diversity of the faunal spectrum, presence of animals with climbing proclivities, abundance of complete and/or articulated specimens, occurrence of antimeric sets of elements, and lack of carnivore-modified bones, indicate that animals accumulated via a natural death trap leading to an area of the cave system with no access to mammalian scavengers. The co-occurrence of well preserved fossils, carnivore coprolites, deciduous teeth of brown hyaena, and some highly fragmented and poorly preserved remains supports the hypothesis of a mixing of sediments coming from distinct chambers, which collected at the bottom of the cave system through the action of periodic water flow. This combination of taphonomic features explains the remarkable state of preservation of the hominin fossils as well as some of the associated faunal material.Item Study of nonlinear MHD tribological squeeze film at generalized magnetic reynolds numbers using DTM.(Public Library of Science, 2015-08-12) Rashidi, M.M.; Freidoonimehr, N.; Momoniat, E.; Rostami, B.In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.Item Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.(Public Library of Science, 2014-12) Aziz, A.; Siddique, J.I.; Aziz, T.In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/ injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.Item Avoiding toxic levels of essential minerals: A forgotten factor in deer diet preferences.(Public Library of Science, 2015-01) Ceacero, F.; Landete-Castillejos, T.; Olguín, A.; Miguel, V.; Gallego, L.; Miranda, M.; García, A.; Martínez, A.; Cassinello, J.Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences.