Faculty of Science
Permanent URI for this communityhttps://wiredspace.wits.ac.za/handle/10539/20140
For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954
Browse
Search Results
Item Variation by Geographic Scale in the Migration-Environment Association: Evidence from Rural South Africa(Federal Institute for Population Research, 2017) Hunter, L.M.; Leyk, S.; Maclaurin, G.J.; Nawrotzki, R.; Twine, W.; Erasmus, B.F.N.; Collinson, M.Scholarly understanding of human migration’s environmental dimensions has greatly advanced in the past several years, motivated in large part by public and policy dialogue around “climate migrants”. The research presented here advances current demographic scholarship both through its substantive interpretations and conclusions, as well as its methodological approach. We examine temporary rural South African outmigration as related to household-level availability of proximate natural resources. Such “natural capital” is central to livelihoods in the region, both for sustenance and as materials for market-bound products. The results demonstrate that the association between local environmental resource availability and outmigration is, in general, positive: households with higher levels of proximate natural capital are more likely to engage in temporary migration. In this way, the general findings support the “environmental surplus” hypothesis that resource security provides a foundation from which households can invest in migration as a livelihood strategy. Such insight stands in contrast to popular dialogue, which tends to view migration as a last resort undertaken only by the most vulnerable households. As another important insight, our findings demonstrate important spatial variation, complicating attempts to generalize migration-environment findings across spatial scales. In our rural South African study site, the positive association between migration and proximate resources is actually highly localized, varying from strongly positive in some villages to strongly negative in others. We explore the socio-demographic factors underlying this “operational scale sensitivity”. The cross-scale methodologies applied here offer nuance unavailable within more commonly used global regression models, although also introducing complexity that complicates story-telling and inhibits generalizability.Item Modeling the risk of transmission of schistosomiasis in Akure North Local Government Area of Ondo State, Nigeria using satellite derived environmental data(Public Library of Science, 2017-07) Ajakaye, O.G.; Adedeji, O.I.; Ajayi, P.O.Schistosomiasis is a parasitic disease and its distribution, in space and time, can be influenced by environmental factors such as rivers, elevation, slope, land surface temperature, land use/cover and rainfall. The aim of this study is to identify the areas with suitable conditions for schistosomiasis transmission on the basis of physical and environmental factors derived from satellite imagery and spatial analysis for Akure North Local Government Area (LGA) of Ondo State. Nigeria. This was done through methodology multicriteria evaluation (MCE) using Saaty’s analytical hierarchy process (AHP). AHP is a multi-criteria decision method that uses hierarchical structures to represent a problem and makes decisions based on priority scales. In this research AHP was used to obtain the mapping weight or importance of each individual schistosomiasis risk factor. For the purpose of identifying areas of schistosomiasis risk, this study focused on temperature, drainage, elevation, rainfall, slope and land use/land cover as the factors controlling schistosomiasis incidence in the study area. It is by reclassifying and overlaying these factors that areas vulnerable to schistosomiasis were identified. The weighted overlay analysis was done after each factor was given the appropriate weight derived through the analytical hierarchical process. The prevalence of urinary schistosomiasis in the study area was also determined by parasitological analysis of urine samples collected through random sampling. The results showed varying risk of schistosomiasis with a larger portion of the area (82%) falling under the high and very high risk category. The study also showed that one community (Oba Ile) had the lowest risk of schistosomiasis while the risk increased in the four remaining communities (Iju, Igoba, Ita Ogbolu and Ogbese). The predictions made by the model correlated strongly with observations from field study. The high risk zones corresponded to known endemic communities. This study revealed that environmental factors can be used in identifying and predicting the transmission of schistosomiasis as well as effective monitoring of disease risk in newly established rural and agricultural communities.