Research Articles (Evolutionary Studies Institute)

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/21325

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Homo naledi and Pleistocene hominin evolution in subequatorial Africa
    (eLife Sciences Publications Ltd, 2017-05) Berger, L.R.; Hawks, J.; Dirks, P.H.G.M.; Elliott, M.; Roberts, E.M.
    New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries.
  • Thumbnail Image
    Item
    Multimodal spatial mapping and visualisation of Dinaledi Chamber and Rising Star Cave.
    (Academic of Science of South Africa (ASSAf), 2016-05) Kruger, A.; Randolph-Quinney, P.; Elliot, M.
    The Dinaledi Chamber of the Rising Star Cave has yielded 1550 identifiable fossil elements - representing the largest single collection of fossil hominin material found on the African continent to date. The fossil chamber in which Homo naledi was found was accessible only through a near-vertical chute that presented immense practical and methodological limitations on the excavation and recording methods that could be used within the Cave. In response to practical challenges, a multimodal set of recording and survey methods was thus developed and employed: (1) recording of fossils and the excavation process was achieved through the use of white-light photogrammetry and laser scanning; (2) mapping of the Dinaledi Chamber was accomplished by means of high-resolution laser scanning, with scans running from the excavation site to the ground surface and the cave entrance; (3) at ground surface, the integration of conventional surveying techniques as well as photogrammetry with the use of an unmanned aerial vehicle was applied. Point cloud data were used to provide a centralised and common data structure for conversion and to corroborate the influx of different data collection methods and input formats. Data collected with these methods were applied to the excavations, mapping and surveying of the Dinaledi Chamber and the Rising Star Cave. This multimodal approach provides a comprehensive spatial framework from individual bones to landscape level.