Research Outputs (Animal, Plant and Environmental Sciences)

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/20142

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Determinants of seasonal changes in availability of food patches for elephants (Loxodonta africana) in a semi-arid African savanna
    (PeerJ Inc., 2017-06) Clegg, B.W.; O'Connor, T.G.
    Loss of biodiversity caused by impact of elephants (Loxodonta africana) on African woodlands may require a management response, but any action should be based on an understanding of why elephants choose to utilise trees destructively. Comprehension of elephant feeding behaviour requires consideration of the relative value of the plant groups they may potentially consume. Profitability of available food is partly determined by the time to locate a food patch and, therefore, as a foundation for understanding the influence of food availability on diet selection, key controls on the density of grass, forb, and browse patches were investigated across space and time in a semi-arid African savanna. Density of food patches changed seasonally because plant life-forms required different volumes of soil water to produce green forage; and woody plants and forbs responded to long-term changes in soil moisture, while grasses responded to short-term moisture pulses. Soil texture, structure of woody vegetation and fire added further complexity by altering the soil water thresholds required for production of green forage. Interpolating between regularly-timed, ground-based measurements of food density by using modelled soil water as the predictor in regression equations may be a feasible method of quantifying food available to elephants in complex savanna environments.
  • Thumbnail Image
    Item
    Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type.
    (Ecological Society of America, 2015-10) Ripley, B.; Visser, V.; Christin, P.-A.; Martin, T.; Osborne, C.; Archibald, S.
    Grasses using the C4 photosynthetic pathway dominate frequently burned savannas, where the pathway is hypothesized to be adaptive. However, independent C4 lineages also sort among different fire environments. Adaptations to fire may thus depend on evolutionary history, which could be as important as the possession of the C4 photosynthetic pathway for life in these environments. Here, using a comparative pot experiment and controlled burn, we examined C3 and C4 grasses belonging to four lineages from the same regional flora, and asked the following questions: Do lineages differ in their responses to fire, are responses consistent between photosynthetic types, and are responses related to fire frequency in natural habitats? We found that in the C4 Andropogoneae lineage, frost killed a large proportion of aboveground biomass and produced a large dry fuel load, which meant that only a small fraction of the living tissue was lost in the fire. C3 species from the Paniceae and Danthonioideae lineages generated smaller fuel loads and lost more living biomass, while species from the C4 lineage Aristida generated the smallest fuel loads and lost the most living tissue. Regrowth after the fire was more rapid and complete in the C4 Andropogoneae and C3 Paniceae, but incomplete and slower in the C3 Danthonioideae and C4 Aristida. Rapid recovery was associated with high photosynthetic rates, high specific leaf area, delayed flowering, and frequent fires in natural habitats. Results demonstrated that phylogenetic lineage was more important than photosynthetic type in determining the fire response of these grasses and that fire responses were related to the frequency that natural habitats burned.