Research Outputs (Animal, Plant and Environmental Sciences)

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/20142

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Geology drives the spatial patterning and structure of termite mounds in an African savanna
    (Ecosphere, 2018-03) Muvengwi, J.; Davies, A.B.; Parrini, F.; Witkowski, E.T.F.
    Termite mounds perform important roles in savanna ecosystems, generating heterogeneity and influencing ecosystem processes across multiple trophic levels. However, the influence the environment and neighboring termite colonies have on mound spatial patterning and structure is poorly understood, despite the profound implications such dynamics can have on ecosystems. To better understand these drivers, we mapped the spatial distribution and size of active and inactive Macrotermes mounds in eight 1-km2 plots on contrasting geologies, nutrient-rich granite and nutrient-poor basalt, in a semi-arid Zimbabwean savanna. Although mound density was not significantly different between basalt (5.5 mounds/ha) and granite (6.1 mounds/ha), termite mound structural attributes and spatial distribution patterns varied greatly between geologies. Mound size distributions differed between the geologies and mounds were 2.6 times taller and 3.9 times wider and had 15 times greater lateral surface area on granite. Subsequently, 6% of the total landscape was covered by mounds on granite compared with only 0.4% on basalt. On granite, large mounds exhibited significant over-dispersion at scales below 30 m, signifying density-dependent thinning. Furthermore, small mounds were clustered around large mounds, likely a result of the budding of new colonies comprising fully fledged castes less vulnerable to competition. In contrast, random patterning was evident on comparably homogenous basalt. Our results demonstrate the powerful influence geological substrate has on mound spatial patterning and structure, suggesting that the importance of termite mounds for ecosystem functioning is more pronounced on nutrient-poor granitic substrates than basalts because of the pronounced over-dispersion, which maximizes mound production per unit area, and much larger mound sizes here.
  • Thumbnail Image
    Item
    Elephant movement patterns in relation to human inhabitants in and around the Great Limpopo Transfrontier Park.
    (AOSIS OpenJournals Publishing AOSIS (Pty) Ltd, 2015-11) Cook, R.M.; Henley, M.D.; Parrini, F.
    The presence of humans and African elephants (Loxodonta africana) in the Great Limpopo Transfrontier Park can create situations of potential human–elephant conflict. Such conflict will likely be exacerbated as elephant and human populations increase, unless mitigation measures are put in place. In this study we analysed the movement patterns of 13 collared adult African elephants from the northern Kruger National Park over a period of eight years (2006–2014). We compared the occurrence and displacement rates of elephant bulls and cows around villages in the Limpopo National Park and northern border of the Kruger National Park across seasons and at different times of the day. Elephants occurred close to villages more often in the dry season than in the wet season, with bulls occurring more frequently around villages than cows. Both the bulls and the cows preferred to use areas close to villages from early evening to midnight, with the bulls moving closer to villages than the cows. These results suggest that elephants, especially the bulls, are moving through the studied villages in Mozambique and Zimbabwe at night and that these movements are most common during the drier months when resources are known to be scarce. Conservation implications: Elephants from the Kruger National Park are moving in close proximity to villages within the Great Limpopo Transfrontier Park. Resettlement of villages within and around the park should therefore be planned away from elephant seasonal routes to minimise conflict between humans and elephants.