Research Outputs (Animal, Plant and Environmental Sciences)

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/20142

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Vegetation type conservation targets, status and level of protection in KwaZulu-Natal in 2016
    (AOSIS (pty) Ltd, 2018-05-09) Jewitt, D.
    Background: Systematic conservation planning aims to ensure representivity and persistence of biodiversity. Quantitative targets set to meet these aims provide a yardstick with which to measure the current conservation status of biodiversity features and measure the success of conservation actions. Objectives: The conservation targets and current ecosystem status of vegetation types and biomes occurring in KwaZulu-Natal (KZN) were assessed, and their level of formal protection was determined, to inform conservation planning initiatives in the province. Method: Land cover maps of the province were used to determine the amount of natural habitat remaining in KZN. This was intersected with the vegetation map and assessed relative to their conservation targets to determine the ecosystem status of each vegetation type in KZN. The proclaimed protected areas were used to determine the level of protection of each vegetation type. Results: In 17 years (1994-2011), 19.7% of natural habitat was lost to anthropogenic conversion of the landscape. The Indian Ocean Coastal Belt and Grassland biomes had the least remaining natural habitat, the highest rates of habitat loss and the least degree of formal protection. Conclusion: These findings inform conservation priorities in the province. Vegetation type targets need to be revised to ensure long-term persistence. Business-as-usual is no longer an option if we are to meet the legislative requirements and mandates to conserve the environment for current and future generations.
  • Thumbnail Image
    Item
    Systematic land-cover change in KwaZulu-Natal, South Africa: Implications for biodiversity.
    (Academy of Science of South Africa (ASSAf), 2015-09) Jewitt, D.; Goodman, P.S.; Erasmus, B.F.N.; O'Connor, T.G.; Witkowski, E.T.F.
    Land-cover change and habitat loss are widely recognised as the major drivers of biodiversity loss in the world. Land-cover maps derived from satellite imagery provide useful tools for monitoring land-use and land-cover change. KwaZulu-Natal, a populous yet biodiversity-rich province in South Africa, is one of the first provinces to produce a set of three directly comparable land-cover maps (2005, 2008 and 2011). These maps were used to investigate systematic land-cover changes occurring in the province with a focus on biodiversity conservation. The Intensity Analysis framework was used for the analysis as this quantitative hierarchical method addresses shortcomings of other established land-cover change analyses. In only 6 years (2005-2011), a massive 7.6% of the natural habitat of the province was lost to anthropogenic transformation of the landscape. The major drivers of habitat loss were agriculture, timber plantations, the built environment, dams and mines. Categorical swapping formed a significant part of landscape change, including a return from anthropogenic categories to secondary vegetation, which we suggest should be tracked in analyses. Longer-term rates of habitat loss were determined using additional land-cover maps (1994, 2000). An average of 1.2% of the natural landscape has been transformed per annum since 1994. Apart from the direct loss of natural habitat, the anthropogenically transformed land covers all pose additional negative impacts for biodiversity remaining in these or surrounding areas. A target of no more than 50% of habitat loss should be adopted to adequately conserve biodiversity in the province. Our analysis provides the first provincial assessment of the rate of loss of natural habitat and may be used to fulfil incomplete criteria used in the identification of Threatened Terrestrial Ecosystems, and to report on the Convention on Biological Diversity targets on rates of natural habitat loss.