ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Stirling cycle engine design and optimisation
    (2011-11-29) Berchowitz, David M.
  • Item
    Machine Learning for Decision-Support in Distributed Networks
    (2006-11-14T08:33:57Z) Setati, Makgopa Gareth
    In this document, a paper is presented that reports on the optimisation of a system that assists in time series prediction. Daily closing prices of a stock are used as the time series under which the system is being optimised. Concepts of machine learning, Artificial Neural Networks, Genetic Algorithms, and Agent-Based Modeling are used as tools for this task. Neural networks serve as the prediction engine and genetic algorithms are used for optimisation tasks as well as the simulation of a multi-agent based trading environment. The simulated trading environment is used to ascertain and optimise the best data, in terms of quality, to use as inputs to the neural network. The results achieved were positive and a large portion of this work concentrates on the refinement of the predictive capability. From this study it is concluded that AI methods bring a sound scientific approach to time series prediction, regardless of the phenomena that is being predicted.