ETD Collection
Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104
Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954
Follow the link below for important information about Electronic Theses and Dissertations (ETD)
Library Guide about ETD
Browse
Search Results
Item Low temperature oxidation of volatile organic compounds using gold-based catalysts(2011-09-13) Kwenda, EllenIn this work, a detailed study of the evaluation of gold-based catalysts supported on manganese oxides for the oxidation of volatile organic compounds (VOCs) has been undertaken. Model catalysts were prepared by deposition-precipitation methods to establish the effect of the support on the catalytic activity of the gold catalysts. The catalysts were characterised by X-ray diffraction, transmission electron microscopy, N2–physisorption measurements and temperature programmed reduction techniques. The activity of the catalysts for VOC oxidation reactions were tested in a continuous flow fix bed glass reactor. The products were analysed by GC/TCD and GC/FID. The catalysts Au/TiO2, Au/Al2O3, Au/ZnO and Au/MnO2 were used for the VOC oxidation reaction. 2-propanol, 2-butanol and toluene were used as VOCs for the study. These were chosen because they are important indoor pollutants given their wide laboratory use and high volatility. Toluene was found to be the most difficult to oxidise, followed by 2-propanol. The effect of calcination temperature and preparation procedure was evaluated for the gold/manganese oxide catalysts. Au/b-MnO2 catalysts prepared by deposition-precipitation showed some catalytic performance which was less than the performance shown by Au/MnOx, prepared by co-precipitation. g-MnO2 proved to be more efficient in the oxidation of 2-propanol than pyrosulite phase MnO2. The addition of gold to any metal oxide support was found to enhance the oxidation of VOCs. Gold-based catalysts were more active than the Ce/MnO2 catalyst. Catalytic tests showed that Au/CeO2 was the superior catalyst for the total oxidation of toluene, 2-propanol and 2-butanol. Ceria is a highly reducible oxide and the formation of gold–ceria interactions produced an even more easily reduced material. University of the Witwatersrand, Johannesburg iiItem Graphical methods for the representation of the Fischer-Tropsch reaction: towards understanding the mixed iron-cobalt catalyst systems(2011-04-14) Musanda Mukenz, ThierryFischer-Tropsch is a process that converts synthesis gas (especially H2 and CO) into hydrocarbons by the mean of metal catalysts (such as Fe, Co, Ru, and Ni). Its success depends strongly on the catalyst used for the reaction, the reactor where the reaction is taking place, and some parameters such as the operating temperature, the reactor pressure, and the gas purity, composition (ratio H2:CO) and flow rate. Besides the above parameters, other factors, such as the degree of reduction of the catalyst, also play an important role for a successful FT reaction. Water can deactivate (by re-oxidation) the catalyst and carbon deposit can reduce the catalyst’s activity. It is well known that FT is a complex reaction because of the range of products that it produces as well as the reactions that occur during the process. A good choice or combination of catalysts, reactor and operating conditions can help to control the product spectrum. 2 In this thesis we develop a simple graphical technique to represent the mass, energy balance and thermodynamic constraints that affect both the catalyst and the reactor. This graphic model is shown to be capable of opening up insights into reactor operations and indicating preferred operational regions. The diagrams make it possible to visualize operations and understand the interactions between the catalysts and the reactor. The mass and energy balances also provide information about the best possible region in which the FT reactor system can be designed and operated. A few catalysts (Fe/TiO2, Co/TiO2 and Fe:Co/TiO2) were prepared for the completion of this work. Some of them were tested separately and others were mixed in the same reactor. The results showed that the physical mixture (of Fe/TiO2 and Co/TiO2) and bimetallic catalysts behave differently from one another. The addition of Fe Fe/TiO2 to a constant amount of Co/TiO2 results in an increase of CO hydrogenation activity, WGS activity and CH4 selectivity. However, the position of the two catalysts in the reactor (one followed by another) shows little effect on the rate of hydrogenation of CO and the CO conversion.Item The water-gas shift deactivation studies(2011-02-21) Mellor, John Ramsdon