ETD Collection
Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104
Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954
Follow the link below for important information about Electronic Theses and Dissertations (ETD)
Library Guide about ETD
Browse
5 results
Search Results
Item The oligomerisation of 1-alkenes to high viscosity oils(2011-04-20) Strachan, KarinItem The synthesis of aryl-substituted naphthalenes and aromatic phosphorus-containing compounds(2008-03-19T07:55:36Z) Moleele, Simon SanaAbstract This thesis is divided into two parts. Part one presents a novel method for the synthesis of naphthalenes bearing aryl substituents. The novel route starts from three simple and readily available tetralones, α-tetralone, 6-methoxy-α-tetralone and 6,7-dimethoxy-α- tetralone. By means of standard Suzuki coupling methodology and aromatization methods, twelve aryl-substituted naphthalenes were synthesized from the tetralones over five steps in good yields. Some of the aryl-substituted naphthalenes synthesized have shown positive results when tested against malignant cancer cells. Part one also explains how unexpected cyclopropa[a]naphthalenes were obtained from 1-aryl-3,4-dihydro-2- naphthaldehydes by treatment with lithium aluminium hydride. The methodology developed in part one is further explored in part two of the thesis, which describes the synthesis of analogues of [1,1’]binaphthalenyl-2,2’-diol. A small library of twelve different biaryl diols was prepared from simple bromo(methoxy)naphthaldehydes that were synthesized in part one. The resultant biaryl diols were used in the design of twenty-two novel phosphite, phosphate, phosphoramidite and phosphoramidate ligands in which the phosphorus atoms are contained in either a nine-or an eight-membered heteroatom ring. However, these ligands are still to be tested in metal-catalyzed hydrogenation reactions.Item Catalytic properties of gold-zeolites and related materials(2008-03-11T07:10:02Z) Magadu, TakalaniZeolite catalysts were prepared by carrying out an ion-exchange process of transition metals and impregnation to incipient-wetness method of metal catalyst using a chlorine free gold precursor, KAu(CN)2. The instability of Au/Y (3.74wt%Au) resulted in low CO oxidation activity (~ 18 % conversion at 450 0C), suggesting that the reduced gold metal atoms are bound to the zeolite by a weak interaction. This is subject to migration within the passages of the zeolite during use. The presence of proton stabilized most of Au clusters (electron deficient species) within the HY zeolite, resulting in small amounts of gold species migrating to the outer surface. Interestingly the CO oxidation activity of Au/HY is half that of Au/Y, which clearly indicate that the presence of metallic gold plays a significant role during CO oxidation. The loading of Au/M-Y (M = Ni2+, Fe3+, Co2+ or Cr3+) were varied from 1.67- 7.48wt%Au and from 1.76-5.45wt%M. Modification of this Y structure with transition metals has been found to be beneficial for both activity and stability of smaller gold clusters, by strengthening the interaction between gold and zeolite exchange sites and by large magnitude in maintaining the dispersion of gold. This suggests that the unreduced chromium ions function as a chemical anchors for reduced Au metal and that the reduced atoms of gold may form small clusters with the anchoring metal. TPR profile has confirmed that the introduction of 1.67wt%Au on Fe-Y (1.88wt%Fe) increased the stability of Fe ions as stabilizer metal. However, as the gold loading of Au/Fe-Y catalyst increases the TPR profile shows that the stability of Fe ions decreases and hence the activity of catalysts. An increase in transition metal content, above 1.88wt%Fe was found to lower the CO oxidation activity. A TPR profile has confirmed that as the reduction potential became more negative, the activity of supported Au increases following the sequence: Ni2+, 0.23 << Fe3+, -0.41 < Cr3+, -0.56. The estimated particle sizes of gold by X-ray diffraction were found to be ~ 12 nm for Ni2+, ~ 7 nm for Fe3+, and ~ 5 nm for Cr3+ stabilized metal. Samples of Au/HY (3.77wt%Au) have been prepared by an ion-exchange method using Au(III) ethylenediamine complex-ions, [Au(en)2]3+. Following a pretreatment in an O2 atmosphere, the catalyst showed the existence of an induction period before reaching a steady state activity; suggesting the need for activating gold prior to catalyzing CO oxidation reaction. As-prepared catalyst contained 85% of gold in the Au3+ valence state as confirmed by Mössbauer spectroscopy. The catalyst was treated with various reducing agents (such as NaBH4); to yield stable and active smaller gold clusters (< 2 nm) inside the HY cavities, as revealed by X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD) and Uv- Vis Spectrophotometer. DRIFTS revealed that electron-deficient particles (Auó+- CO species) of gold clusters, inside the HY framework and in contact with protons are active species for CO oxidation. CO activity and formation of smaller gold clusters depends on the nature and molar ratio of reducing agents, and the source of gold. The induction period observed for unreduced Au catalyst is a slow step in the activation of gold active sites. Treatment of Au/Y (3.46wt%Au) with sodium borohydride enhanced the activation of gold active species and hence improves the catalytic activity. The NaBH4 treated Au/Y (3.73wt%Au) catalyst has shown, for the first time, activity of approximately 28% CO conversion. The catalyst showed almost the same activity and induction period as that of the untreated Au/HY (3.77wt%Au) catalyst, which leaves much to be investigated about the behaviour of Au on Y zeolite upon treatment with a proper reducing agent. The protons have been found to stabilize the smaller Au nanoparticles within the zeolite cavities. The modification of zeolite-Y was carried out by treatment with different alkali metal nitrates such as LiNO3, NaNO3 and KNO3 before introducing gold from different sources, (i.e. gold ethylenediamine complex ion, Au(en)2Cl3; chloroauric acid, HAuCl4; or potassium dicyano aurate, KAu(CN)2 complex). The CO oxidation activity of the catalysts was found to depend on the nature of the gold source and on the type of alkali metal nitrate used. The order of activity was as follows: HAuCl4 >> KAu(CN)2 > Au(en)2Cl3. It was found that the activity of catalysts prepared by deposition of Au from an aqueous solution of chloroauric acid on Na-modified zeolites-Y, increased as a result of an increase in the amount of Au deposited as confirmed X-ray fluorescence spectroscopy (XRF). The Kmodified zeolite-Y had a smaller amount of Au deposited (i.e. Au/KY, 0.454wt%Au; Au/NaY, 0.772wt%Au and Au/LiY, 0.212wt%Au) and hence the CO oxidation activity was lower than that of Na-modified zeolites-Y. Thus, the order of the catalytic activity is as follows: Na > K > Li. The XRD studies have revealed that metallic gold particles sizes do not depend on the nature of alkali metal nitrates used to modify the zeolite-Y surface and the zeolite-Y crystallinity has been maintained. Monometallic Au/NaY (0.772wt%Au, treated with NaNO3) was found to be active in ethylene hydrogenation with ~5% conversion. Treatment of catalysts with NaBH4 was found to lower the catalytic activity of the catalysts, contrary to activities observed on CO oxidation and these concluded that cationic gold are responsible for the observed activity. The activity was found to depend on the source of Au used, and the order is as follows; HAuCl4 >> KAu(CN)2 > Au(en)Cl3. Bimetallic catalysts of Au/M-Y (where Au represent gold from KAu(CN)2, and M = Ni2+, Fe3+, or Cr3+) were found to be more active compared to monometallic catalysts due to promotional effect of transition metal. The order of activity of the bimetallic system at 260 0C was as follows; Ni2+ >> Fe3+ > Cr3+, and at 150 0C, was Ni2+ >> Cr3+ > Fe3+, contradicting the order of activity observed on CO oxidation. Formation of carbonaceous deposits on the surface of the catalyst at temperature higher than 260 0C has been confirmed. Cu modified Au/TiO2 (anatase, 200m2/g) has been prepared by incipient-wetness method by either introducing the modifier, before or after Au loading. Such catalysts were found to give high and stable activity for the water-gas shift (WGS) reaction, when compared to unmodified Au/TiO2 catalysts. It has been suggested that an increase in activity on modified Au/TiO2, is mainly due to the existence of a synergetic interaction between Cu and Au, since the activity of both Cu/TiO2 and Au/TiO2 is lower than that of bimetallic system. The presence of nitrates on Cuc-Au/TiO2 (c Cu precursor is Cu(NO3)2*2.5H2O) has been found to be detrimental to the activity of Au on TiO2; due to the poisoning of Au active sites and enhancement of Au agglomeration by NO2 - formed during the reaction. An increase in Cu loading lowers the activity of Au. A XANES spectrum has confirmed that gold exists as either Au+/Au0 during WGS reaction and Cu exists as copper ions (Cu+/Cu2+) before and during WGS reaction. Formation of bimetallic particles was not detected by EXAFS data analysis. The observed effects are interpreted as a mutual influence of gold and copper ions and reduced species of gold and copper due to their competing for ion exchange sites. Cu has no promotional effect on low temperature CO oxidation and on preferential CO oxidation in excess of hydrogen.Item Role of a topologically conserved Isoleucine in the structure and function of Glutathione Transferases(2006-11-15T08:19:55Z) Fisher, Loren TichauerProteins in the glutathione transferase family share a common fold. The close packing of secondary structures in the thioredoxin fold in domain 1 forms a compact hydrophobic core. This fold has a bababba topology and most proteins/domains with this fold have a topologically conserved isoleucine residue at the N-terminus of a-helix 3. Class Alpha glutathione transferases are one of 12 classes within the glutathione transferase family. To investigate the role of the conserved isoleucine residue in the structure, function and stability of glutathione transferases, homodimeric human glutathione transferase A1-1 (hGST A1-1) was used as a representative of the GST family. Ile71 was replaced with valine and the properties of I71V hGST A1-1 were compared with those of wildtype hGST A1-1. The spectral properties monitored using far-UV CD and tryptophan fluorescence indicated little change in secondary or tertiary structure confirming the absence of any gross structural changes in hGST A1-1 due to the incorporation of the mutation. Both wildtype and mutant dimeric proteins were determined to have a monomeric molecular mass of 26 kDa. The specific activity of I71V hGST A1-1 (130 mmol/min/mg) was three times that of wildtype hGST A1-1 (48 mmol/min/mg). I71V hGST A1-1 showed increased kinetic parameters compared to wildtype with a 10-fold increase in kcat/Km for CDNB. The increase in Km of I71V hGST A1-1 suggests the mutation had a negative effect on substrate binding. The DDG for transition state stabilisation was –5.82 kJ/mol which suggest the I71V mutation helps stabilise the transition state of the SNAR reaction involving the conjugation of reduced glutathione (GSH) to 1-chloro-2,4-dinitrobenzene (CDNB). A 2-fold increase in the IC50 value for I71V hGST A1-1 (11.3 mM) compared to wildtype (5.4 mM) suggests that the most noticeable change due to the mutation occurs at the H-site of the active site. Conformational stability studies were performed to determine the contribution of Ile71 to protein stability. The non-superimposability of I71V hGST A1-1 unfolding curves and the decreased m-value suggest the formation of an intermediate state. The conformational stability of I71V hGST A1-1 (16.5 kcal/mol) was reduced when compared to that of the wildtype (23 kcal/mol). ITC was used to dissect the binding energetics of Shexylglutathione to wildtype and I71V hGSTA1-1. The ligand binds 5-fold more tightly to wildtype hGST A1-1 (0.07 mM) than I71V hGST A1-1 (0.37 mM). The I71V mutant displays a larger negative DCp than wildtype hGST A1-1 (DDCp = -0.41 kJ/mol/K). This indicates that a larger solvent-exposed hydrophobic surface area is buried for I71V hGST A1-1 than for wildtype hGST A1-1 upon the binding of S-hexylglutathione. Overall the results suggest that Ile71 conservation is for the stability of the protein as well as playing a pivotal indirect role in catalysis and substrate binding.