ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Relationship between undrained shear strength and moisture content for red berea sand tailings
    (2001) Du Plessis, Albertus
    The project report deals with the relationship between the undrained shear strength and the moisture content of Red Berea sand tailings. The tailings were obtained from the Red Berea sand dunes near Richards Bay, Kwa-Zulu Natal, South Africa. The geology of the area consists of Miocene deposits of red clayey sand, classified as Berea Formation. A method for determining stability of a tailings dam for Red Berea sand tailings, was investigated. The general method of using the degree of saturation of the tailings to specify the rate of rise, is not applicable to this type of tailings. It was found that a relationship exists between the undrained shear strength of the tailings, and the moisture content. The moisture content can easily be measured and the undrained shear strength can then be calculated. The calculated undrained shear strength can be used in a total stress analysis to determine a factor of safety against failure. This project report consists of a discussion of the literature, which was used as the basis for the assumptions made, as well as a description of the tests performed to prove the above-mentioned relationship. Test results are given, interpreted and used in an illustrative example of a stability analysis.
  • Item
    Effect of internal erosion on the mechanical behaviour of soils
    (2017) MacRobert, Charles John
    The effect of internal erosion on the mechanical behaviour of soils was investigated experimentally, using sodium chloride grains as an analogue for erodible soil grains. With this technique, the loss of controlled quantities of finer particles could be simulated under more realistic hydro-mechanical conditions than in previous research, but within practical experimental time scales. Two experimental programs were undertaken. The first looked at general changes in volume and shear strength using a large diameter oedometer adapted to perform a punch test following salt dissolution. The second program investigated particular changes in volume and shear strength following salt dissolution using an adapted direct shear box Previous studies have shown shear strength reductions following the loss of finer particles representing as little as 5 % of the total mass of the original soil. Findings here show shear strength can be largely unaffected if the erodible finer fraction (F) makes up less than a transition value (Ft) of approximately 10 – 15 % by mass of the original soil. This threshold represents F above which the coarser fabric is looser than at its minimum void ratio. As F increases further, finer particles increasingly hinder the coarser particles from achieving their densest packing, such that the coarser fabric remaining after finer particle loss is in a looser state than the original fabric, the remaining fabric reaching its maximum void ratio at a critical finer fraction (Fc) of approximately 25 – 35 %. For F < Fc, finer particle loss results in limited collapse of the coarser fabric and it was found that the state of this initial coarser fabric determines the shear behaviour of the soil following the loss of finer particles. The shear behaviour of initially dense specimens with F < Ft remained similar to that of a dense soil following finer particle loss, whereas shear behaviour of initially dense specimens with Ft < F < Fc approached that of a loose soil as F increased. Soils with higher internal filter ratios (D15c/D85f) were found to have higher values of Ft and Fc. Soils with F > Fc, settled and weakened significantly following finer particle loss, reflecting the load-bearing role finer particles play in this case. This load bearing nature of the finer particles in soils with F > Fc decreases the risk of internal erosion.