ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Catalytic evaluation of Ru(II) and Co(II) salicylaldimine complexes for transfer hydrogenation of acetophenone
    (2017) Ndou, Dakalo Lorraine
    N-(aryl) salicylaldimine ligands were prepared by the condensation of salicylaldehyde and aniline, 2,6 – dimethylaniline, 2,6 – diisopropylaniline and N,N-diethyl-p-phenylenediamine to give the desired ligands in good yields (70 - 93 % yield). The synthesised ligands were characterised by NMR spectroscopy, FTIR spectroscopy, ESI mass spectrometry and elemental analysis. The purity of these ligands was determined by determining the meting points. Co(II) and Ru(II) complexes were prepared from Co(OAc)2.4H2O and [RuCl2(η6-p cymene)]2 to afford the N-(aryl) salicylaldiminato complexes Co1 – Co4 and Ru1 – Ru4 with yields in the range 60 – 66 % and 90 – 97 %, respectively. These complexes were characterised by NMR spectroscopy, FTIR, ESI mass spectrometry, elemental analysis and TGA. The purity of these complexes was also determined by determining the melting point. The transfer hydrogenation of acetophenone was studied using 2-propanol as the hydrogen source and KOH as the base with the Ru (II) and Co (II) complexes as catalyst precursors. The catalytic activity of these complexes was evaluated using 1H-NMR and GC - MS. Preliminary studies were performed for 6 h at 82 oC and the conversion was evaluated using 1H-NMR. Due to the low catalytic activity of these complexes, the reaction time was increased to 48 h. Increasing the reaction time resulted in improvements in the conversion of the complexes. The catalysis was also evaluated at various temperatures to study the effect it has on the activity of the complexes. Temperature was found to not have a significant effect on the conversion. The ruthenium complexes were found to be active towards the transfer hydrogenation of acetophenone but the cobalt complexes were observed to have no catalytic activity in the transfer hydrogenation of acetophenone. The ruthenium complexes were investigated in an ionic liquid – organic biphasic system with the aim of separating the metal complexes in order to reuse the catalysts. Toluene was the organic phase and [BMIM]BF4 was the ionic liquid which afforded a biphasic system. Three cycles were performed and the performance of Ru1 – Ru3 decreased with each cycle but Ru4 behaved differently as the performance increased with each cycle.
  • Item
    Hydrogenation of carbon monoxide over modified cobalt-based catalysts
    (1991) Colley, Saul Eric
    A disadvantage of the Fischer-Tropsch synthesis is that a broad product spectrum is obtained. Economic considerations however require an improvement in the optimization of the reaction to maximize the production of high value commercial products, in·particular, short chain olefins and high molecular weight hydrocarbons. [Abbreviated abstract. Open document to view full version]