ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    An automatic controller tuning algorithm.
    (1991) Christodoulou, Michael, A.
    The report describes the design of an algorithm which can be used for automatic controller tuning purposes. It uses an on-line parameter estimator and a pole assignrnent design method. The resulting control law is formulated to approximate a proportional-integral (PI) industrial controller. The development ofthe algorithm is based on the delta-operator, Some implementation aspects such as covariance resetting, dead zone, and signal conditioning are also discussed. Robust stability and performance are two issues that govern the design approach. Additionally transient and steady state system response criteria are utilized from the time and frequency domains. The design work is substantiated with the use of simulation and real plant tests.
  • Item
    Adaptive control and parameter identification
    (2015-07-02) Rabinowitz, Basil P
    The broad theory of adaptive control is introduced, with m o t i v a t i o n for using such techniques. The two mos t popu l a r techniques, the Model Re f er e n c e A d a ptive C o n t r o l l e r s (MRAC) and the Self Tuning C o n t r o l l e r s (STC) are studied in more d e t a i l . The MRAC and the STC often lead to identical solutions. The c on d i t i o n s for which these two techni q u e s are e q u i v a l e n t are discussed. P a r a m e t e r Adap t a ti o n A l go r i t h m s (PAA) are required by both the MRA a n : the STC. For this reason the PAA is e x a m i ne d in some det.ai . This is i n itiated by de r i v i ng an o f f - l i n e lea; -squares PAA. This is then c o n v e r t e d into a r ec u r s i v e on-l in e estimator. Using intuitive arguments, the various choices of gain p a r a m e t e r as well as the v a r ia t i o n s of the nasic form o f the a l g o r i t h m are discussed. This i n c l ud e s a w a r n in g as to w here the p i tf a l l s of such a l g o r i t h m s may lie. In order to examine the s t a b il i t y of these a lgorithms, the H y p e r s t a b i l i t y theorem is introduced. This requires k n o w l e d g e of the Popov i n e q ua l i t y and Stric t l y P o s itive Real (SPR) functions. This is intro d u c ed initially using i n t u i t i v e ene i g y concepts after which the r i g o r ou s m a t h e m a t i c a l representa* ion is d e r i v e d . The H y p e r s t a b i l i t y T h e o r e m is then used to exam i n e the s t a b i l i t y condition for various forms of the PAA.