ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Some improved genetic-algorithms based heuristics for global optimization with innovative applications
    (2010-09-07) Adewumi, Aderemi Oluyinka
    The research is a study of the efficiency and robustness of genetic algorithm to instances of both discrete and continuous global optimization problems. We developed genetic algorithm based heuristics to find the global minimum to problem instances considered. In the discrete category, we considered two instances of real-world space allocation problems that arose from an academic environment in a developing country. These are the university timetabling problem and hostel space allocation problem. University timetabling represents a difficult optimization problem and finding a high quality solution is a challenging task. Many approaches, based on instances from developed countries, have been reported in the literature. However, most developing countries are yet to appreciate the deployment of heuristics and metaheuristics in handling the timetabling problem. We therefore worked on an instance from a university in Nigeria to show the feasibility and efficiency of heuristic method to the timetabling problem. We adopt a simplified bottom up approach in which timetable are build around departments. Thus a small portion of real data was used for experimental testing purposes. As with similar baseline studies in literature, we employ genetic algorithm to solve this instance and show that efficient solutions that meet stated constraints can be obtained with the metaheuristics. This thesis further focuses on an instance of university space allocation problem, namely the hostel space allocation problem. This is a new instance of the space allocation problems that has not been studied by metaheuristic researchers to the best of our knowledge. The problem aims at the allocation of categories of students into available hostel space. This must be done without violating any hard constraints but satisfying as many soft constraints as possible and ensuring optimum space utilization. We identified some issues in the problem that helped to adapt metaheuristic approach to solve it. The problem is multi-stage and highly constrained. We first highlight an initial investigation based on genetic algorithm adapted to find a good solution within the search space of the hostel space allocation problem. Some ideas are introduced to increase the overall performance of initial results based on instance of the problem from our case study. Computational results obtained are reported to demonstrate the effectiveness of the solution approaches employed. Sensitivity analysis was conducted on the genetic algorithm for the two SAPs considered to determine the best parameter values that consistently give good solutions. We noted that the genetic algorithms perform well specially, when repair strategies are incorporated. This thesis pioneers the application of metaheuristics to solve the hostel space allocation problem. It provides a baseline study of the problem based on genetic algorithms with associated test data sets. We report the best known results for the test instances. It is a known fact that many real-life problems are formulated as global optimization problems with continuous variables. On the continuous global optimization category therefore, we focus on improving the efficiency and reliability of real coded genetic algorithm for solving unconstrained global optimization, mainly through hybridization with exploratory features. Hybridization has widely been recognized as one of the most attractive approach to solving unconstrained global optimization. Literatures have shown that hybridization helps component heuristics to taking advantage of their individual strengths while avoiding their weaknesses. We therefore derived three modified forms of real coded genetic algorithm by hybridizing the standard real-coded genetic algorithm with pattern search and vector projection. These are combined to form three new algorithms namely, RCGA-PS, RCGA-P, and RCGA-PS-P. The hybridization strategy used and results obtained are reported and compared with the standard real-coded genetic algorithm. Experimental studies show that all the modified algorithms perform better than the original algorithm.
  • Item
    Some Population Set-Based Methods for Unconstrained Global Optimization
    (2006-11-16T08:40:11Z) Kaelo, Professor
    Many real-life problems are formulated as global optimization problems with continuous variables. These problems are in most cases nonsmooth, nonconvex and often simulation based, making gradient based methods impossible to be used to solve them. Therefore, efcient, reliable and derivative-free global optimization methods for solving such problems are needed. In this thesis, we focus on improving the efciency and reliability of some global optimization methods. In particular, we concentrate on improving some population set-based methods for unconstrained global optimization, mainly through hybridization. Hybridization has widely been recognized to be one of the most attractive areas of unconstrained global optimization. Experiments have shown that through hybridization, new methods that inherit the strength of the original elements but not their weakness can be formed. We suggest a number of new hybridized population set-based methods based on differential evolution (de), controlled random search (crs2) and real coded genetic algorithm (ga). We propose ve new versions of de. In the rst version, we introduce a localization, called random localization, in the mutation phase of de. In the second version, we propose a localization in the acceptance phase of de. In the third version, we form a de hybrid algorithm by probabilistically combining the point generation scheme of crs2 with that of de in the de algorithm. The fourth and fth versions are also de hybrids. These versions hybridize the mutation of de with the point generation rule of the electromagnetism-like (em) algorithm. We also propose ve new versions of crs2. The rst version modies the point generation scheme of crs2 by introducing a local mutation technique. In the second and third modications, we probabilistically combine the point generation scheme of crs2 with the linear interpolation scheme of a trust-region based method. The fourth version is a crs hybrid that probabilistically combines the quadratic interpolation scheme with the linear interpolation scheme in crs2. In the fth version, we form a crs2 hybrid algorithm by probabilistically combining the point generation scheme of crs2 with that of de in the crs2 algorithm. Finally, we propose ve new versions of the real coded genetic algorithm (ga) with arithmetic crossover. In the rst version of ga, we introduce a local technique. We propose, in the second version, an integrated crossover rule that generates two children at a time using two different crossover rules. We introduce a local technique in the second version to obtain the third version. The fourth and fth versions are based on the probabilistic adaptation of crossover rules. The efciency and reliability of the new methods are evaluated through numerical experiments using a large test suite of both simple and difcult problems from the literature. Results indicate that the new hybrids are much better than their original counterparts both in reliability and efciency. Therefore, the new hybrids proposed in this study offer an alternative to many currently available stochastic algorithms for solving global optimization problems in which the gradient information is not readily available.