ETD Collection
Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104
Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954
Follow the link below for important information about Electronic Theses and Dissertations (ETD)
Library Guide about ETD
Browse
2 results
Search Results
Item Equivalence and symmetry groups of a nonlinear equation in plasma physics(2016-07-14) Bashe, Mantombi BerylIn this work we give a brief overview of the existing group classification methods of partial differential equations by means of examples. On top of these methods we introduce another new method which classify according to low-dimensional Lie elgebras, One can ask: What is the aim of introducing a new method whilst there are existing methods? This question is answered in the following paragraph. Firstly we classify our system of non-linear partial differential equations using the preliminary group classification method (one of the existing methods). The results are not different from what; Euler, Steeb and Mulsor have obtained in 1991 and 1992. That is, this method does not yield new information. This new method which classifies according to low-dimensional Lie algebras is used to classify a general system of equations from plasma physics. Finally, using this method we completely classify our system for four-dimensionnl algebras. For a partial differential equation to be completely classified using this method, it must admit a low-dimensional Lie algebra.Item Applications of lie symmetry techniques to models describing heat conduction in extended surfaces(2014-01-09) Mhlongo, Mfanafikile DonIn this thesis we consider the construction of exact solutions for models describing heat transfer through extended surfaces (fins). The interest in the solutions of the heat transfer in extended surfaces is never ending. Perhaps this is because of the vast application of these surfaces in engineering and industrial processes. Throughout this thesis, we assume that both thermal conductivity and heat transfer are temperature dependent. As such the resulting energy balance equations are nonlinear. We attempt to construct exact solutions for these nonlinear models using the theory of Lie symmetry analysis of differential equations. Firstly, we perform preliminary group classification of the steady state problem to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended by one element. Some reductions are performed and invariant solutions that satisfy the Dirichlet boundary condition at one end and the Neumann boundary condition at the other, are constructed. Secondly, we consider the transient state heat transfer in longitudinal rectangular fins. Here the imposed boundary conditions are the step change in the base temperature and the step change in base heat flow. We employ the local and nonlocal symmetry techniques to analyze the problem at hand. In one case the reduced equation transforms to the tractable Ermakov-Pinney equation. Nonlocal symmetries are admitted when some arbitrary constants appearing in the governing equations are specified. The exact steady state solutions which satisfy the prescribed boundary conditions are constructed. Since the obtained exact solutions for the transient state satisfy only the zero initial temperature and adiabatic boundary condition at the fin tip, we sought numerical solutions. Lastly, we considered the one dimensional steady state heat transfer in fins of different profiles. Some transformation linearizes the problem when the thermal conductivity is a differential consequence of the heat transfer coefficient, and exact solutions are determined. Classical Lie point symmetry methods are employed for the problem which is not linearizable. Some reductions are performed and invariant solutions are constructed. The effects of the thermo-geometric fin parameter and the power law exponent on temperature distribution are studied in all these problems. Furthermore, the fin efficiency and heat flux are analyzed.