ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Metal-insulator transition in boron-ion implanted type IIa diamond.
    (2000) Tshepe, Tshakane
    High purity natural type Il a diamond specimens were used in this study. Conducting layers in the surfaces of these diamonds were generated using low-ion dose multiple implantation-annealing steps. The implantation energies and the ion-doses were spread evenly to intermix the point-defects, thereby increasing the probability of interstitialvacancy recombinations and promoting dopant-interstitial-vacancy combination resulting in activated dopant sites in the implanted layers. The process used to prepare our samples is known as cold-implantation-rapid-annealing (CIRA). Carbon-ion and boron-ion implantation was used to prepare the diamond specimens, and de-conductivity measurements in the temperature range of 1.5-300 K were made following each CIRA sequence. An electrical conductivity crossover from the Mott variable range hopping (VRH) to the Efros-Shklovskii VRH conduction was observed when the temperature of insulating samples was lowered. The conductivity crossover temperature Tcross decreases with increasing concentration of the boron-ion dose in the implanted layers, indicating the narrowing of the Coulomb gap in the single-particle density of states near the Fermi energy. (Abbreviation abstract)