ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Numerical simulation of structural, electronic and optical properties of transition metal chalcogenides
    (2017) Rugut, Elkana Kipkogei
    Intensive study on structural, electronic and optical properties of bulk transition metal dichalcogenides and dipnictogenides (MX2; where M = V, Nb and X = S, Se, Te, P) was undertaken. A relative stability test was done to determine the most stable ground state configuration via calculation of total ground state energy and volume which was fitted to the third order Birch-Murnaghan equation of state to extract lattice parameters. Cohesive energies of the above mentioned MX2 compounds and their elemental solids were then computed from which formation energies were acquired based on their respective equations of reaction between reactants and product. Its significance was to aid in determining if a material is energetically stable. Elastic constants were predicted from which mechanical properties i.e bulk, Young’s and shear moduli and consequently Poisson’s ratio were resolved by feeding the stiffness matrix onto online elastic tensor analysis tool which facilitated verification of their mechanical stability based on the well-known Born stability conditions which varies from one crystal system to another, at a later stage phonon dispersion curves were plotted after performing phonon calculation based on phonopy code to verify if the materials of concern are dynamically stable. After a material had fulfilled all the above stability tests, its structural study was initiated using various functionals. Functional that described best the structural properties of each individual compound considered was then applied in exploring its electronic and optical properties whose motivation was to find out the most stable phase as well as gauge if these materials could be used in various fields that suits their mechanical and optical properties. Furthermore, from carefully calculated optical spectra, plasma frequencies were analyzed which indicated the possibility of applying a material in plasmonic related fields. In addition to above, other factors to be considered when selecting a given electrode material that are crucial for optoelectronics are good chemical and thermal stabilities, high transparency and excellent conductivity.