ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Microbial methane oxidation assessment and characterisation in bench-scale landfill bioreactors
    (2007-02-22T10:57:36Z) Muthraparsad, Namisha
    Anaerobic fermentative bacteria degrade waste components in landfills where methane (CH4) and carbon dioxide (CO2) are the primary biogases emitted and methanotrophic bacteria in the cover soil oxidise the emitted CH4. Three bi-phasic bench-scale landfill bioreactors were commissioned to evaluate soil nutrient addition effects on CH4 formation and oxidation and to isolate inherent soil methanotrophs using Nitrate Mineral Salts (NMS) medium. Set A soil contained no nutrient additions, Set B soil contained 50 μM nitrate and 150 μM phosphate and Set C soil contained dried sewage cake. Bioreactors were run for a 4 week period and pH, anaerobic gas emissions, volatile fatty acids (VFA), bacterial counts and scanning electron microscopy (SEM) analyses were performed. A pilot study revealed that pH dictated the stability of methanogenesis, where increased VFA levels inhibited methanogenesis. Furthermore, it was revealed that modifications of the NMS medium were needed to enrich for methanotrophs. An in depth study showed that the Set C anaerobic reactor produced the most methane with Set B the least. The hypothesis that methane oxidation in the soil could regulate methane formation in the waste could not be conclusively observed, as a lack of aeration in the soil reactors is believed to have prevented the proliferation of methanotrophs here. No methanotrophs were successfully isolated from soil, but rather major heterotrophic bacterial interference was observed. SEM revealed the presence of rod and cocci forms of bacteria in both leachate and soil, consistent with literature reports, which indicated that the bench-scale landfill bioreactors were capable of promoting bacterial growth.