ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Preservation theorems for algebraic and relational models of logic
    (2013-07-30) Morton, Wilmari
    In this thesis a number of different constructions on ordered algebraic structures are studied. In particular, two types of constructions are considered: completions and finite embeddability property constructions. A main theme of this thesis is to determine, for each construction under consideration, whether or not a class of ordered algebraic structures is closed under the construction. Another main focus of this thesis is, for a particular construction, to give a syntactical description of properties preserved by the construction. A property is said to be preserved by a construction if, whenever an ordered algebraic structure satisfies it, then the structure obtained through the construction also satisfies the property. The first four constructions investigated in this thesis are types of completions. A completion of an ordered algebraic structure consists of a completely lattice ordered algebraic structure and an embedding that embeds the former into the latter. Firstly, different types of filters (dually, ideals) of partially ordered sets are investigated. These are then used to form the filter (dually, ideal) completions of partially ordered sets. The other completions of ordered algebraic structures studied here include the MacNeille completion, the canonical extension (also called the completion with respect to a polarization) and finally a prime filter completion. A class of algebras has the finite embeddability property if every finite partial subalgebra of some algebra in the class can be embedded into some finite algebra in the class. Firstly, two constructions that establish the finite embeddability property for residuated ordered structures are investigated. Both of these constructions are based on completion constructions: the first on the Mac- Neille completion and the second on the canonical extension. Finally, algebraic filtrations on modal algebras are considered and a duality between algebraic and relational versions of filtrations is established.