ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    An SDN-based firewall shunt for data-intensive science applications
    (2016) Miteff, Simeon
    Data-intensive research computing requires the capability to transfer les over long distances at high throughput. Stateful rewalls introduce su cient packet loss to prevent researchers from fully exploiting high bandwidth-delay network links [25]. To work around this challenge, the science DMZ design [19] trades o stateful packet ltering capability for loss-free forwarding via an ordinary Ethernet switch. We propose a novel extension to the science DMZ design, which uses an SDN-based rewall. This report introduces NFShunt, a rewall based on Linux's Net lter combined with OpenFlow switching. Implemented as an OpenFlow 1.0 controller coupled to Net lter's connection tracking, NFShunt allows the bypass-switching policy to be expressed as part of an iptables rewall rule-set. Our implementation is described in detail, and latency of the control-plane mechanism is reported. TCP throughput and packet loss is shown at various round-trip latencies, with comparisons to pure switching, as well as to a high-end Cisco rewall. Cost, as well as operations and maintenance aspects, are compared and analysed. The results support reported observations regarding rewall introduced packet-loss, and indicate that the SDN design of NFShunt is a technically viable and cost-e ective approach to enhancing a traditional rewall to meet the performance needs of data-intensive researchers