ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Synthesis of copper nanoparticles contained in mesoporous hollow carbon spheres as potential catalysts for growing helical carbon nanofibers
    (2017) Magubane, Alice
    The aim of this study was to synthesize helical carbon nanofibers with controlled diameter by using copper nanoparticles contained inside hollow carbon sphere. In this work, different methods have been explored to synthesize copper nanoparticles contained inside mesoporous hollow carbon spheres in order to minimize the sintering effect of the copper nanoparticles. Mesoporous hollow carbon spheres were used not only as a support for the copper nanoparticles but to stabilize and disperse these nanoparticles to prevent the formation of aggregates. Mesoporous hollow carbon spheres were synthesized using a hard templating method, in which mesoporous silica spheres or polystyrene spheres were used as a sacrificial template. Carbon nanofibers with different morphologies, including straight and helical fibers were obtained by a chemical vapor deposition method where acetylene was decomposed over copper nanoparticles contained inside mesoporous hollow carbon spheres catalyst at 350 °C. The synthesized carbon nanofibers were grown on the surface of the mesoporous hollow carbon spheres as the methods used to synthesize the catalyst failed to incorporate copper nanoparticles inside the spheres. Differences in the diameter of the straight and helical carbon nanofibers were observed from both catalysts. This supports the important effect of particle size on influencing the shape of the synthesized carbon nanofibers.