ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Agent-based learning for pattern matching in high-frequency trade data
    (2017) Loonat, Fayyaaz
    Previousresearchofsequentialinvestmentstrategiesforportfolioselectionhaveshownthatthereare strategies that exist that can beat the best stock in the market. In this dissertation, an algorithm is presented that uses a nearest neighbour approach similar to the one used by Gy¨orfi et al [20, 21, 22]. Theapproachishoweverextendedtoincludezero-costportfoliosandusesaquadraticapproximation, instead of an optimisation step, to determine how capital should be allocated in the portfolio based on the neighbours that have been found. A portfolio that results in an increase in the investor’s capitalandcomparesfavourablytocertainbenchmarks,suchasthebeststock,indicatesthatthereare patternsinthetimeseriesdata. Otherfeaturesofthealgorithmpresentedistoallowforthedatatobe clustered by a selection of stocks or partitioned based on time. The algorithm is tested on synthetic datasetsthatdepictdifferentmarkettypesandisshowntoaccuratelydeterminetrendsinthedata. The algorithm is then tested on real data from the New York Stock Exchange (NYSE) and data from the JohannesburgStockExchange(JSE).Theresultsofthealgorithmfromtherealdatasetsarecompared to implemented versions of past strategies from the literature and compares favourably.