ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Approximation theory for exponential weights.
    (1998) Kubayi, David Giyani.
    Much of weighted polynomial approximation originated with the famous Bernstein qualitative approximation problem of 1910/11. The classical Bernstein approximation problem seeks conditions on the weight functions \V such that the set of functions {W(x)Xn};;"=l is fundamental in the class of suitably weighted continuous functions on R, vanishing at infinity. Many people worked on the problem for at least 40 years. Here we present a short survey of techniques and methods used to prove Markov and Bernstein inequalities as they underlie much of weighted polynomial approximation. Thereafter, we survey classical techniques used to prove Jackson theorems in the unweighted setting. But first we start, by reviewing some elementary facts about orthogonal polynomials and the corresponding weight function on the real line. Finally we look at one of the processes (If approximation, the Lagrange interpolation and present the most recent results concerning mean convergence of Lagrange interpolation for Freud and Erdos weights.