ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Galvanic interactions between minerals during dissolution
    (1994) Holmes, Paul Richard
    A quantitative description of galvanic interactions between sulphide minerals based on thermodynamic and kinetic parameters has been developed. The basis for quantitative description involves conducting a voltage balance over the galvanic couple. The contributions to the voltage balance include the galvanic couple cell emf, kinetic descriptions of the anodic and cathodic half reactions, the voltage characteristics 'of mineral-mineral contacts and solution voltage losses. The rates of the anodic and cathodic half' reactions were modelled by the Butler-Volmer equation and ti1ediffusion equation. A potentiostat was used to vary the voltages losses across mineral-mineral contacts. TIle galvanic couples were constructed. as rotating ring disc electrodes and hence electrolyte voltage losses were negligible. Three galvanic couples, copper-platinum, copper-pyrite and galena-pyrite, were electrochemically characterised under different conditions of ferric concentration, electrode rotation rate and temperature. The effect of illumination on the anodic dissolution of galena was investigated. The electrochemical model is in good agreement with experimentally measured galvanic currents. Galvanic interaction is a dynamic function and various models are developed which account for dynamic behaviour in galvanic cells.