ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Synthesis and characterisation of carbon nanomaterials using South African coal fly ash and their use in novel nanocomposites
    (2016) Hintsho, Nomso Charmaine
    The synthesis and applications of carbon nanomaterials (CNMs) such as carbon nanofibres (CNFs), carbon nanotubes (CNTs) and carbon nanospheres (CNSs) have attracted a lot of attention due to their unique chemical and physical properties. For the synthesis of CNMs with desired morphology to occur, one needs to consider three components, namely, the catalyst, carbon source and source of power. However, the cost of the catalysts involved in making CNMs is one of the challenging factors. Due to properties such as high aspect ratio, CNM use as fillers in polymer nanocomposites has been on the forefront to improve the mechanical strength of polymer materials such as polyesters. Due to their hydrophobic nature, the interaction between the filler and matrix tends to be problematic. In this study, we investigated the use of a waste material, coal fly ash as a catalyst for the synthesis of CNMs using the chemical vapour deposition method. The use of CO2 and C2H2 as carbon sources, either independently or together, was also employed. A comparison of two different ashes was also investigated. Lastly, the use of these synthesized and acid treated CNMs as fillers was examined. The catalysts and synthesized CNMs were characterised using SEM, TEM, EDS, laser Raman spectroscopy, XRD, BET, TGA and Mössbauer spectroscopy. The mechanical properties were investigated by testing the tensile, flexural and impact properties. The synthesis of CNMs using fly ash as a catalyst without pre-treatment or impregnating with other metals was achieved. Optimum yields and uniform morphology was obtained at 650 oC, at a flow rate of 100 ml/min using H2 as a carrier gas and C2H2 as a carbon source. Mössbauer spectroscopy revealed that cementite (Fe3C) was the compound responsible for CNF formation. Further, CNMs were formed over fly ash as a catalyst, using CO2 as a sole carbon source, an additive and a carbon source before reacting with C2H2. Duvha was Page | iii found to be a better fly ash catalyst compared to Grootvlei and an optimum loading was achieved at 0.25%. Treating the CNFs with HCl/HNO3 resulted in the highest tensile, flexural and impact strengths. This study