ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Computational study of chalcogenide based solar energy materials
    (2016) Dongho Nguimdo, Guy Moise
    Amongst the major technological challenges of the twenty rst century is the harvesting of renewable energy sources. We studied the solar cell performance of the ternary compounds AgAlX2 (X = S, Se and Te) and AgInS2 as promising materials for meeting this challenge. Structural, electronic and optical properties of the compounds were investigated by means of the density functional theory and many body perturbation theory. Using cohesive energy and enthalpy, we found that among six potential phases of AgAlX2 and AgInS2, the chalcopyrite and the orthorhombic structures were very competitive as zero pressure phases. We predicted a low pressure-induced phase transition from the chalcopyrite phase to a rhombohedral phase. For the chalcopyrite phase, we found that the tetragonal distortion and anion displacement were the cause of the crystal eld splitting. The bandgaps from the general gradient approximation PBEsol were underestimated when compared to experiment and accurate bandgaps were obtained from the hybrid functioanl HSE06, the meta-general gradient approximation MBJ and GW approximation. Optical absorption from the Bethe-Selpeter equation indicated the presence of bound exciton in AgAlX2. We estimated the solar cell performance of the compounds using the Shockley and Queisser model and the spectroscopy limited maximum e ciency approach. We found that apart from AgAlS2, the estimated theoretical e ciency of the other compounds was greater that 13 %.