ETD Collection

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/104


Please note: Digitised content is made available at the best possible quality range, taking into consideration file size and the condition of the original item. These restrictions may sometimes affect the quality of the final published item. For queries regarding content of ETD collection please contact IR specialists by email : IR specialists or Tel : 011 717 4652 / 1954

Follow the link below for important information about Electronic Theses and Dissertations (ETD)

Library Guide about ETD

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Forward and inverse spectral theory of Sturm-Liouville operators with transmission conditions
    (2017) Bartels, Casey Ann
    ForwardandinversespectralproblemsconcerningSturm-Liouvilleoperatorswithoutdiscontinuitieshavebeenstudiedextensively. Bycomparison,therehasbeenlimitedworktacklingthecase where the eigenfunctions have discontinuities at interior points, a case which appears naturally in physical applications. We refer to such discontinuity conditions as transmission conditions. We consider Sturm-Liouville problems with transmission conditions rationally dependent on the spectral parameter. We show that our problem admits geometrically double eigenvalues, necessitating a new analysis. We develop the forward theory associated with this problem and also consider a related inverse problem. In particular, we prove a uniqueness result analogous to that of H. Hochstadt on the determination of the potential from two sequences of eigenvalues. In addition, we consider the problem of extending Sturm’s oscillation theorem, regarding the number of zeroes of eigenfunctions, from the classical setting to discontinuous problems with general constant coefficient transmission conditions