Research Outputs (School of Geosciences)

Permanent URI for this collectionhttps://wiredspace.wits.ac.za/handle/10539/21117

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μcT-scanning techniques.
    (Public Library of Science, 2017-02) Benoit, J.; Norton, L.A.; Manger, P.R.; Rubidge, B.S.
    Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a μCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face). The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa), a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa); and an apparatus with which to inflict a wound for venom delivery (the ridged dentition).
  • Thumbnail Image
    Item
    Oxygen isotopes suggest elevated thermometabolism within multiple permo-triassic therapsid clades
    (eLife Sciences Publications Ltd, 2017-07) Rey, K.; Amiot, R.; Fourel, F.; Abdala, F.; Fluteau, F.; Jalil, N.-E.; Liu, J.; Rubidge, B.S.; Smith, R.M.H.; Steyer, J.S.; Viglietti, P.A.; Wang, X.; Lécuyer, C.
    The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (d18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the d18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism.
  • Thumbnail Image
    Item
    Taphonomic analysis of the faunal assemblage associated with the hominins (Australopithecus sediba) from the early pleistocene cave deposits of Malapa, South Africa.
    (Public Library of Science, 2015-06-10) Val, A.; Dirks, P.H.G.M.; Backwell, L.R.; Berger, L.R.; D'Errico, F.
    Here we present the results of a taphonomic study of the faunal assemblage associated with the hominin fossils (Australopithecus sediba) from the Malapa site. Results include estimation of body part representation, mortality profiles, type of fragmentation, identification of breakage patterns, and microscopic analysis of bone surfaces. The diversity of the faunal spectrum, presence of animals with climbing proclivities, abundance of complete and/or articulated specimens, occurrence of antimeric sets of elements, and lack of carnivore-modified bones, indicate that animals accumulated via a natural death trap leading to an area of the cave system with no access to mammalian scavengers. The co-occurrence of well preserved fossils, carnivore coprolites, deciduous teeth of brown hyaena, and some highly fragmented and poorly preserved remains supports the hypothesis of a mixing of sediments coming from distinct chambers, which collected at the bottom of the cave system through the action of periodic water flow. This combination of taphonomic features explains the remarkable state of preservation of the hominin fossils as well as some of the associated faunal material.