Research Outputs (Civil and Environmental Engineering)
Permanent URI for this collection
Information regarding content on this collection please contact : Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
Browsing Research Outputs (Civil and Environmental Engineering) by Keyword "Cement"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Early-age heat evolution of clinker cements in relation to microstructure and composition: Implications for temperature development in large concrete elements.(Elsevier, 2004) Ballim, Y.; Graham, P.C.This paper presents an assessment of the range and extent of variation of heat evolution of nominally similar cement clinkers from a range of cement production facilities in South Africa. Clinker samples were collected at nine cement plants and cements were prepared by grinding each clinker with a uniform quality of gypsum. X-ray fluorescence and optical microscope techniques were then used to characterise each clinker and cement in terms of chemical composition and cement compound morphology. Concretes were then prepared with the laboratory-manufactured cements and these were tested in an adiabatic calorimeter in order to determine the rate of heat evolution from each of the clinker samples. The results of these tests were related to the chemical and morphological characteristics of the corresponding cement clinkers. The results indicate a clear differentiation of clinker cements into low, medium and high heat cements. The relationships between this classification of the heat performance of the cements and the chemistry and morphology of the clinker is not clear at this stage. However, using a finite difference heat model, the paper presents an indication of the implications of the measured heat characteristics of the cement for early-age temperature distributions in large concrete elements.Item Effectiveness of the fineness of two South African Portland cements for controlling early-age temperature development in concrete.(The South African Institution Of Civil Engineering., 2011) Graham, P.C.; Ballim, Y.; Kazirukanyo, J.B.Temperature gradients due to heat of hydration of cement can cause cracking and present serious structural and serviceability concerns in concrete structures. Engineers use a wide range of strategies to limit the potential for such cracking, mainly by minimising the maximum temperature in the concrete. This paper considers the possibility of using more coarsely ground cement as one of the strategies for reducing the maximum concrete temperature. Two cement clinkers were used to produce cements with five different levels of fineness. These ten cements were then used to make concretes which were tested in an adiabatic calorimeter to determine the heat evolution characteristics. The measured results were then used in a computational model to calculate the temperature profiles likely to occur in two types of concrete elements. The results indicate that the effect of increasing fineness on the total amount of heat released during hydration is dependent on the mineralogy and crystal composition of the cement clinker. Also, the use of coarse-ground cement as a means of reducing the maximum temperature in concrete is more effective in the case of concrete elements with high cement content but of moderate dimensions. In sections of larger dimension, coarse-ground cements show lower levels of temperature reduction but also lower thermal gradients.