School of Mining Engineering
Permanent URI for this community
For information on accessing School of Mining Engineering content please contact : Salome Potgieter by email : salome.potgieter@wits.ac.za or Tel : 011 717 1961
Browse
Browsing School of Mining Engineering by Keyword "Co-Kriging"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Cokriging for optimal mineral resource estimates in mining operations.(The Southern African Institute of Mining and Metallurgy., 2014) Minnitt, R.C.A.; Deutsch, C.V.Cokriging uses a sparsely sampled, but accurate and precise primary dataset, together with a more abundant secondary data-set, for example grades in a polymetallic orebody, containing both error and bias, to provide improved results compared to estimation with the primary data alone, as well as filtering the error and mitigating the effects of conditional bias. The method described here may also be applied in polymetallic orebodies and in other cases where the primary and secondary data could be collocated, and one of the data-sets need not be biased, unreliable, etc. An artificially created reference data-set of 512 lognormally distributed precious metal grades sampled at 25×25 m intervals constitutes the primary data-set. A secondary data-set on a 10×10 m grid comprising 3200 samples drawn from the reference data-set includes 30 per cent error and 1.5 multiplicative bias on each measurement. The primary and secondary non-collocated data-sets are statistically described and compared to the reference data-set. Variograms based on the primary data-set are modelled and used in the kriging of 10×10 m blocks using the 25×25 m and 50×50 m data grids for comparison against the results of the cokriged estimation. A linear model of coregionalization (LMC) is established using the primary and secondary data-sets and cokriging using both data-sets is shown to be a significant improvement over kriging with the primary data-set alone. The effects of the error and bias are filtered and removed during the cokriging estimation procedure. Thus cokriging using the more abundant secondary data, even though it contains error and bias, significantly improves the estimation of recoverable reserves.