Research Outputs (Animal, Plant and Environmental Sciences)
Permanent URI for this collection
Browse
Browsing Research Outputs (Animal, Plant and Environmental Sciences) by Keyword "animal behavior"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identifying space use at foraging arena scale within the home ranges of large herbivores.(Public Library of Science, 2015-06) Owen-Smith, N.; Martin, J.An intermediate spatiotemporal scale of food procurement by large herbivores is evident within annual or seasonal home ranges. It takes the form of settlement periods spanning several days or weeks during which foraging activity is confined to spatially discrete foraging arenas, separated by roaming interludes. Extended by areas occupied for other activities, these foraging arenas contribute towards generating the home range structure. We delineated and compared the foraging arenas exploited by two African large herbivores, sable antelope (a ruminant) and plains zebra (a non-ruminant), using GPS-derived movement data. We developed a novel approach to specifically delineate foraging arenas based on local change points in distance relative to adjoining clusters of locations, and compared its output with modifications of two published methods developed for home range estimation and residence time estimation respectively. We compared how these herbivore species responded to seasonal variation in food resources and how they differed in their spatial patterns of resource utilization. Sable antelope herds tended to concentrate their space use locally, while zebra herds moved more opportunistically over a wider set of foraging arenas. The amalgamated extent of the foraging arenas exploited by sable herds amounted to 12-30 km2, compared with 22-100 km2 for the zebra herds. Half-day displacement distances differed between settlement periods and roaming interludes, and zebra herds generally shifted further over 12h than sable herds. Foraging arenas of sable herds tended to be smaller than those of zebra, and were occupied for period twice as long, and hence exploited more intensively in days spent per unit area than the foraging arenas of zebra. For sable both the intensity of utilization of foraging arenas and proportion of days spent in foraging arenas relative to roaming interludes declined as food resources diminished seasonally, while zebra showed no seasonal variation in these metrics. Identifying patterns of space use at foraging arena scale helps reveal mechanisms generating the home range extent, and in turn the local population density. Thereby it helps forge links between behavioural ecology, movement ecology and population ecology.Item Space use variation in Co-occurring sister species: Response to environmental variation or competition?(Public Library of Science, 2015-02) Dufour, C.M.S.; Meynard, C.; Watson, J.; Pillay, N.; Ganem, G.; Rioux, C.; Benhamou, S.; Perez, J.; Du Plessis, J.J.; Avenant, N.Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.