Research Outputs (School of Geosciences)
Permanent URI for this collection
Browse
Browsing Research Outputs (School of Geosciences) by Issue Date
Now showing 1 - 20 of 26
Results Per Page
Sort Options
Item An Acheulean handaxe from Gladysvale Cave site, Gauteng, South Africa.(Academy of Science of South Africa (ASSAf), 2006-03) Hall, G.; Pickering, R.; Lacruz, R.; Hancox, J.; Berger, L.R.; Schmid, P.WE DESCRIBE A SINGLE HANDAXE FROM fossiliferous breccias at Gladysvale Cave, South Africa. The artefact is the only known tool so far discovered during the controlled excavations conducted at this site over the last decade, and was recovered from decalcified sediments near the stratigraphic interface of two breccia units, making it difficult to assign it with confidence to either. The morphology of the handaxe indicates a middle-late Acheulean industry, and preliminary electron spin resonance and palaeomagnetic dating suggest an age of greater than 780 000 years.Item A partial skull of Paranthropus robustus from Cooper's Cave, South Africa.(Academy of Science of South Africa (ASSAf), 2008-03) Berger, L.R.; Kuhn, B.F.; Steininger, C.A partial hominin skull (COB 101) was identified in the fossil collections of the Transvaal Museum, Pretoria, attributed to the Cooper's Cave site in South Africa. The find represents the most complete hominin specimen recovered from localities at this site to date. COB 101 comprises the supraorbital, zygomatic, infraorbital and nasoalveolar regions of the right side, and the right upper third premolar. The specimen has undergone post-depositional distortion that resulted in the flattening of the facial structures. Here we describe and compare COB 101 with other hominin material from Africa and find that this specimen shares numerous diagnostic features with Paranthropus robustus. The discovery of COB 101 augments the number of specimens attributed to this species from other South African sites and other Cooper's Cave localities.Item 3D techniques and fossil identification: An elephant shrew hemi-mandible from the Malapa site.(Academy of Science of South Africa (ASSAf), 2011-11-07) Val, A.; Carlson, K.J; Kibii, J.M.; Steininger, C.; Churms, C.; Kuhn, B.F.; Berger, L.R.Conventional methods for extracting fossilised bones from calcified clastic sediments, using air drills or chemical preparations, can damage specimens to the point of rendering them unidentifiable. As an alternative, we tested an in silico approach that extended preparation and identification possibilities beyond those realisable using physical methods, ultimately proving to be crucial in identifying a fragile fossil. Image data from a matrix-encased hemi-mandible of a micromammal that was collected from the Plio-Pleistocene site of Malapa, Cradle of Humankind, South Africa, were acquired using microtomography. From the resultant images, a 3D rendering of the fossil was digitally segmented. Diagnostic morphologies were evaluated on the rendering for comparison with extant comparative specimens, positively identifying the specimen as an elephant shrew (Elephantulus sp.). This specimen is the first positively identified micromammal in the Malapa faunal assemblage. Cutting-edge in silico preparation technology provides a novel tool for identifying fossils without endangering bone integrity, as is commonly risked with physical preparation.Item Youngest dinocephalian fossils extend the Tapinocephalus Zone, Karoo Basin, South Africa.(Academy of Science of South Africa (ASSAf), 2015-03-01) Day, M.O.; Guven, S.; Abdala, F.; Jirah, S.; Rubidge, B.; Almond, J.The dinocephalians (Synapsida, Therapsida) were one of the dominant tetrapod groups of the Middle Permian (Guadalupian Epoch, ∼270-260 million years ago) and are most abundantly recorded in the Tapinocephalus Assemblage Zone (AZ) of the Main Karoo Basin, South Africa. Dinocephalians are thought to have become extinct near the top of the Abrahamskraal Formation of the Beaufort Group and their disappearance is one criterion used to define the base of the overlying Pristerognathus AZ. Because of the abundance of fossils in the Karoo, the Beaufort Group biozones form the biostratigraphic standard for later Permian terrestrial tetrapod ecosystems, so their stratigraphic delineation is of great importance to Permian palaeobiology. We report two new specimens of the rare tapinocephalid dinocephalian Criocephalosaurus from the lowermost Poortjie Member, which makes them the youngest dinocephalians known from the Main Karoo Basin and extends the Tapinocephalus AZ from the Abrahamskraal Formation up into the Teekloof Formation. The extension of the Tapinocephalus AZ relative to the lithostratigraphy potentially affects the biozone or biozones to which a fossil species can be attributed; this extension has implications for biostratigraphic correlations within the Main Karoo Basin as well as with other basins across Gondwana. These discoveries also indicate that a population of herbivorous tapinocephalids survived as rare constituents of the tetrapod fauna after most generic richness within the clade had already been lost.Item Taphonomic analysis of the faunal assemblage associated with the hominins (Australopithecus sediba) from the early pleistocene cave deposits of Malapa, South Africa.(Public Library of Science, 2015-06-10) Val, A.; Dirks, P.H.G.M.; Backwell, L.R.; Berger, L.R.; D'Errico, F.Here we present the results of a taphonomic study of the faunal assemblage associated with the hominin fossils (Australopithecus sediba) from the Malapa site. Results include estimation of body part representation, mortality profiles, type of fragmentation, identification of breakage patterns, and microscopic analysis of bone surfaces. The diversity of the faunal spectrum, presence of animals with climbing proclivities, abundance of complete and/or articulated specimens, occurrence of antimeric sets of elements, and lack of carnivore-modified bones, indicate that animals accumulated via a natural death trap leading to an area of the cave system with no access to mammalian scavengers. The co-occurrence of well preserved fossils, carnivore coprolites, deciduous teeth of brown hyaena, and some highly fragmented and poorly preserved remains supports the hypothesis of a mixing of sediments coming from distinct chambers, which collected at the bottom of the cave system through the action of periodic water flow. This combination of taphonomic features explains the remarkable state of preservation of the hominin fossils as well as some of the associated faunal material.Item Traditional glue, adhesive and poison used for composite weapons by ju/'hoan san in nyae nyae, Namibia. implications for the evolution of hunting equipment in prehistory.(Public Library of Science, 2015-10) Wadley, L.; Trower, G.; Backwell, L.; D'Errico, F.Ju/'hoan hunters from Nyae Nyae, near Tsumkwe in Namibia, demonstrate the manufacture of three fixative pastes made from plant extracts, and poison made from grubs and plant extracts. Ammocharis coranica and Terminalia sericea produce simple glue. Ozoroa schinzii latex mixed with carbonized Aristeda adscensionis grass is a compound adhesive. Composite poison is made from Chrysomelid grub viscera mixed with salivary extracts of Acacia mellifera inner bark and the tuber sap of Asparagus exuvialis. In order to document potential variability in the chaîne opératoire, and to eliminate inherent biases associated with unique observations, we studied manufacturing processes in three separate Nyae Nyae villages. Although there are methodological similarities in the Nyae Nyae area, we observed a few differences in contemporary traditions of poison manufacture. For example, some hunters make powder from Asparagus exuvialis tuber sap by boiling, reducing, hardening and grinding it, while others simply use heated sap. The Ju/'hoan hunting kit provides insights for archaeologists, but we must exercise caution when looking for continuity between prehistoric and historical technical systems. Some traditions have been lost to modern hunters, while others are new. We should also expect variability in the Stone Age because of geographically restricted resources. Simple glue, compound adhesive, and poison recipes identified in the Stone Age have no modern equivalents. By about 60,000 years ago at Diepkloof, simple glue was used for hafting tools, but at similarly-aged Sibudu there are recipes that combine red ochre powder with plant and/or animal ingredients. At Border Cave, novel poisons and compound adhesives were used in the Early Later Stone Age. It is possible that the complexity that we record in the manufacture of fixative pastes and poison used by Ju/'hoan hunters represents a hafting system both similar to and different from that observed at the Stone Age sites of Diepkloof, Sibudu, and Border Cave.Item Putting fossils on the map: Applying a geographical information system to heritage resources(Academic of Science of South Africa (ASSAf)., 2015-12) Van ver Walt, M.; Cooper, A.K.; Netterberg, I.; Rubidge, B.S.A geographical information system (GIS) database was compiled of Permo-Triassic tetrapod fossils from the Karoo Supergoup in South African museum collections. This database is the first of its kind and has great time applicability for understanding tetrapod biodiversity change though time more than 200 million years ago. Because the museum catalogues all differed in recorded information and were not compliant with field capture requirements, this information had to be standardised to a format that could be utilised for archival and research application. Our paper focuses on the processes involved in building the GIS project, capturing metadata on fossil collections and formulating future best practices. The result is a multi-layered GIS database of the tetrapod fossil record of the Beaufort Group of South Africa for use as an accurate research tool in palaeo- and geoscience research with applications for ecology, ecosystems, stratigraphy and basin development.Item Multimodal spatial mapping and visualisation of Dinaledi Chamber and Rising Star Cave.(Academic of Science of South Africa (ASSAf), 2016-05) Kruger, A.; Randolph-Quinney, P.; Elliot, M.The Dinaledi Chamber of the Rising Star Cave has yielded 1550 identifiable fossil elements - representing the largest single collection of fossil hominin material found on the African continent to date. The fossil chamber in which Homo naledi was found was accessible only through a near-vertical chute that presented immense practical and methodological limitations on the excavation and recording methods that could be used within the Cave. In response to practical challenges, a multimodal set of recording and survey methods was thus developed and employed: (1) recording of fossils and the excavation process was achieved through the use of white-light photogrammetry and laser scanning; (2) mapping of the Dinaledi Chamber was accomplished by means of high-resolution laser scanning, with scans running from the excavation site to the ground surface and the cave entrance; (3) at ground surface, the integration of conventional surveying techniques as well as photogrammetry with the use of an unmanned aerial vehicle was applied. Point cloud data were used to provide a centralised and common data structure for conversion and to corroborate the influx of different data collection methods and input formats. Data collected with these methods were applied to the excavations, mapping and surveying of the Dinaledi Chamber and the Rising Star Cave. This multimodal approach provides a comprehensive spatial framework from individual bones to landscape level.Item Comparison of Holocene temperature data (Boomplaas Cave) and oxygen isotope data (Cango Caves)(Academy of Science of South Africa (ASSAf), 2016-05) Thackeray, J.F.Item A New Centrosaurine Ceratopsid, Machairoceratops cronusi gen et sp. nov., from the Upper Sand Member of the Wahweap Formation (Middle Campanian), Southern Utah(Public Library of Science, 2016-05) Lund, E.K.; O'Connor, P.M.; Loewen, M.A.; Jinnah, Z.A.The Upper Cretaceous (middle-late Campanian) Wahweap Formation of southern Utah contains the oldest diagnostic evidence of ceratopsids (to date, all centrosaurines) in North America, with a number of specimens recovered from throughout a unit that spans between 81 and 77 Ma. Only a single specimen has been formally named, Diabloceratops eatoni, from the lower middle member of the formation. Machairoceratops cronusi gen. et sp. nov., a new centrosaurine ceratopsid from the upper member of the Wahweap Formation, is here described based on cranial material representing a single individual recovered from a calcareous mudstone. The specimen consists of two curved and elongate orbital horncores, a left jugal, a nearly complete, slightly deformed braincase, the left squamosal, and a mostly complete parietal ornamented by posteriorly projected, anterodorsally curved, elongate spikes on either side of a midline embayment. The fan-shaped, stepped-squamosal is diagnostic of Centrosaurinae, however, this element differs from the rectangular squamosal in Diabloceratops. Machairoceratops also differs in the possession of two anterodorsally (rather than laterally) curved epiparietal ornamentations on either side of a midline embayment that are distinguished by a posteromedially-oriented sulcus along the entire length of the epiparietal. Additionally, the parietosquamosal frill is lacking any other epiossifications along its periphery. Machairoceratops shares a triangular (rather than round) frill and spikelike epiparietal loci (p1) ornamentation with the stratigraphically lower Diabloceratops. Both parsimony and Bayesian phylogenetic analyses place Machairoceratops as an earlybranching centrosaurine. However, the parsimony-based analysis provides little resolution for the position of the new taxon, placing it in an unresolved polytomy with Diabloceratops. The resultant Bayesian topology yielded better resolution, aligning Machairoceratops as the definitive sister taxon to a clade formed by Diabloceratops and Albertaceratops. Considered together, both phylogenetic methods unequivocally place Machairoceratops as an early-branching centrosaurine, and given the biostratigraphic position of Machairoceratops, these details increase the known ceratopsid diversity from both the Wahweap Formation and the southern portion of Laramidia. Finally, the unique morphology of the parietal ornamentation highlights the evolutionary disparity of frill ornamentation near the base of Centrosaurinae.Item Developmental simulation of the adult cranial morphology of australopithecus sediba.(Academy of Science of South Africa (ASSAf), 2016-07) Carlson, K.B.; De Ruiter, D.J.; Dewitt, T.J.; Mcnuity, K.P.; Tafforeau, P.; Berger, L.R.; Carlson, K.J.The type specimen of Australopithecus sediba (MH1) is a late juvenile, prompting some commentators to suggest that had it lived to adulthood its morphology would have changed sufficiently so as to render hypotheses regarding its phylogenetic relations suspect. Considering the potentially critical position of this species with regard to the origins of the genus Homo, a deeper understanding of this change is especially vital. As an empirical response to this critique, a developmental simulation of the MH1 cranium was carried out using geometric morphometric techniques to extrapolate adult morphology using extant male and female chimpanzees, gorillas and humans by modelling remaining development. Multivariate comparisons of the simulated adult A. sediba crania with other early hominin taxa indicate that subsequent cranial development primarily reflects development of secondary sexual characteristics and would not likely be substantial enough to alter suggested morphological affinities of A. sediba. This study also illustrates the importance of separating developmental vectors by sex when estimating ontogenetic change. Results of the ontogenetic projections concur with those from mandible morphology, and jointly affirm the taxonomic validity of A. sediba.Item Cranial bosses of choerosaurus dejageri (therapsida, therocephalia): Earliest evidence of cranial display structures in eutheriodonts.(Public Library of Science, 2016-08) Benoit, J.; Manger, P.R.; Fernandez, V.; Rubidge, B.S.Choerosaurus dejageri, a non-mammalian eutheriodont therapsid from the South African late Permian (∼259 Ma), has conspicuous hemispheric cranial bosses on the maxilla and the mandible. These bosses, the earliest of this nature in a eutheriodont, potentially make C. dejageri a key species for understanding the evolutionary origins of sexually selective behaviours (intraspecific competition, ritualized sexual and intimidation displays) associated with cranial outgrowths at the root of the clade that eventually led to extant mammals. Comparison with the tapinocephalid dinocephalian Moschops capensis, a therapsid in which head butting is strongly supported, shows that the delicate structure of the cranial bosses and the gracile structure of the skull of Choerosaurus would be more suitable for display and low energy combat than vigorous head butting. Thus, despite the fact that Choerosaurus is represented by only one skull (which makes it impossible to address the question of sexual dimorphism), its cranial bosses are better interpreted as structures involved in intraspecific selection, i.e. low-energy fighting or display. Display structures, such as enlarged canines and cranial bosses, are widespread among basal therapsid clades and are also present in the putative basal therapsid Tetraceratops insignis. This suggests that sexual selection may have played a more important role in the distant origin and evolution of mammals earlier than previously thought. Sexual selection may explain the subsequent independent evolution of cranial outgrowths and pachyostosis in different therapsid lineages (Biarmosuchia, Dinocephalia, Gorgonopsia and Dicynodontia).Item The possibility of lichen growth on bones of Homo naledi: Were they exposed to light?(Academy of Science of South Africa (ASSAf), 2016-08) Thackeray, J.F.Item The Piltdown case: Further questions(Academy of Science of South Africa (ASSAf), 2016-09) Thackeray, J.F.Item Osteopathology and insect traces in the Australopithecus africanus skeleton StW 431(Academy of Science of South Africa (ASSAf), 2017-01) Zipfel, B.; Jakata, K.; Bonney, H.; Odes, E.J.; Parkinson, A.H.; Randolph-Quinney, P.S.; Berger, L.R.We present the first application of high-resolution micro computed tomography in an analysis of both the internal and external morphology of the lumbar region of StW 431 - a hominin skeleton recovered from Member 4 infill of the Sterkfontein Caves (South Africa) in 1987. The lumbar vertebrae of the individual present a number of proliferative and erosive bony processes, which were investigated in this study. Investigations suggest a complex history of taphonomic alteration to pre-existing spinal degenerative joint disease (SDJD) as well as post-mortem modification by an unknown insect. This study is in agreement with previous pathological diagnoses of SDJD which affected StW 431 and is the first time insect traces on this hominin are described. The results of this analysis attest to the complex series of post-mortem processes affecting the Sterkfontein site and its fossil assemblages.Item Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius(Nature Publishing Group, 2017-01) Ashwal, L.D.; Wiedenbeck, M.; Torsvik, T.H.A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius based on the recovery of Proterozoic zircons from basaltic beach sands. Here we document the first U-Pb zircon ages recovered directly from 5.7 Ma Mauritian trachytic rocks. We identified concordant Archaean xenocrystic zircons ranging in age between 2.5 and 3.0 Ga within a trachyte plug that crosscuts Older Series plume-related basalts of Mauritius. Our results demonstrate the existence of ancient continental crust beneath Mauritius; based on the entire spectrum of U-Pb ages for old Mauritian zircons, we demonstrate that this ancient crust is of central-east Madagascar affinity, which is presently located ∼700 km west of Mauritius. This makes possible a detailed reconstruction of Mauritius and other Mauritian continental fragments, which once formed part of the ancient nucleus of Madagascar and southern India.Item Arrested development-A comparative analysis of multilayer corona textures in high-grade metamorphic rocks(European Geosciences Union (EGU), 2017-02) Ogilvie, P.; Gibson, R.L.Coronas, including symplectites, provide vital clues to the presence of arrested reaction and preservation of partial equilibrium in metamorphic and igneous rocks. Compositional zonation across such coronas is common, indicating the persistence of chemical potential gradients and incomplete equilibration. Major controls on corona mineralogy include prevailing pressure (P), temperature (T ) and water activity (aH2O) during formation, reaction duration (t ) single-stage or sequential corona layer growth; reactant bulk compositions (X) and the extent of metasomatic exchange with the surrounding rock; relative diffusion rates for major components; and/or contemporaneous deformation and strain. High-variance local equilibria in a corona and disequilibrium across the corona as a whole preclude the application of conventional thermobarometry when determining P-T conditions of corona formation, and zonation in phase composition across a corona should not be interpreted as a record of discrete P-T conditions during successive layer growth along the P-T path. Rather, the local equilibria between mineral pairs in corona layers more likely reflect compositional partitioning of the corona domain during steadystate growth at constant P and T . Corona formation in pelitic and mafic rocks requires relatively dry, residual bulk rock compositions. Since most melt is lost along the high-T prograde to peak segment of the P-T path, only a small fraction of melt is generally retained in the residual post-peak assemblage. Reduced melt volumes with cooling limit length scales of diffusion to the extent that diffusion-controlled corona growth occurs. On the prograde path, the low melt (or melt-absent) volumes required for diffusion-controlled corona growth are only commonly realized in mafic igneous rocks, owing to their intrinsic anhydrous bulk composition, and in dry, residual pelitic compositions that have lost melt in an earlier metamorphic event. Experimental work characterizing rate-limiting reaction mechanisms and their petrogenetic signatures in increasingly complex, higher-variance systems has facilitated the refinement of chemical fractionation and partial equilibration diffusion models necessary to more fully understand corona development. Through the application of quantitative physical diffusion models of coronas coupled with phase equilibria modelling utilizing calculated chemical potential gradients, it is possible to model the evolution of a corona through P-T-X-t space by continuous, steady-state and/or sequential, episodic reaction mechanisms. Most coronas in granulites form through a combination of these endmember reaction mechanisms, each characterized by distinct textural and chemical potential signatures with very different petrogenetic implications. An understanding of the inherent petrogenetic limitations of a reaction mechanism model is critical if an appropriate interpretation of P-T evolution is to be inferred from a corona. Since corona modelling employing calculated chemical potential gradients assumes nothing about the sequence in which the layers form and is directly constrained by phase compositional variation within a layer, it allows far more nuanced and robust understanding of corona evolution and its implications for the path of a rock in P-T-X space.Item A re-examination of the enigmatic Russian tetrapod Phreatophasma aenigmaticum and its evolutionary implications(Copernicus GmbH, 2017-02) Brocklehurst, N.; Fröbisch, J.Phreatophasma aenigmaticum is a mysterious tetrapod from the earliest middle Permian of Russia, represented by a single femur. At various times since its original description it has been considered a therapsid synapsid, a pelycosaurian-grade synapsid from the family Caseidae, and most recently a seymouriamorph amphibian. Using up-to-date knowledge of the postcranial morphology and evolution of early synapsids, the specimen is re-evaluated and subjected to cladistic analysis. Seymouriamorph and therapsid affinities are rejected, and a caseid affinity is supported based on the deep intertrochanteric fossa; the widely spaced distal condyles; the short, robust femoral shaft; and the lack of a longitudinal ridge enclosing the posterior margin of the intertrochanteric fossa. When included in two cladistic matrices, the first a global analysis of basal synapsids and the second devoted to caseids, Phreatophasma is found to occupy a basal position within caseids, retaining plesiomorphic characters such as the lack of compression of the anterior condyle of the femur and the almost identical distal extent of the two condyles. The recognition of Phreatophasma as a basal caseid has great implications for the evolution and biogeography of this family. This is only the second example of a caseid from the palaeo-temperate region of Russia, and it is not closely related to the first (Ennatosaurus tecton), implying at least two distinct dispersal events from the palaeoequatorial to temperate latitudes. It also implies that a number of plesiomorphic characteristics of caseids, including small body size and a relatively long femur, were retained as late as the middle Permian, a time when caseids were otherwise represented by large herbivorous taxa.Item Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μcT-scanning techniques.(Public Library of Science, 2017-02) Benoit, J.; Norton, L.A.; Manger, P.R.; Rubidge, B.S.Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a μCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face). The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa), a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa); and an apparatus with which to inflict a wound for venom delivery (the ridged dentition).Item Potential for identifying plant-based toxins on San hunter-gatherer arrowheads(Academy of Science of South Africa (ASSAf), 2017-03) Wooding, M.; Bradfield, J.; Maharaj, V.; Koot, D.; Wadley, L.; Prinsloo, L.; Lombard, M.The antiquity of the use of hunting poisons has received much attention in recent years. In this paper we present the results of a pilot study designed to detect the presence of organic compounds, typically of less than 1200 Da, from poisonous plants that may have been used as hunting poisons in the past. We used ultra-performance liquid chromatography connected to a Synapt G2 high-resolution MS-QTOF mass spectrometer (UPLC-QTOF-MS) to provisionally identify plant-based toxins present in (1) extracts of fresh plant material, (2) a blind control recipe consisting of three plant ingredients and (3) a Hei||om arrow poison of unknown ingredients. Although not all expected toxic compounds were identified, those that were identified compared favourably with those reported in the literature and confirmed through databases, specifically the Dictionary of Natural Products and ChemSpider. MS/MS fragmentation patterns and accurate mass were used for tentative identification of compounds because archaeological residues usually contain insufficient material for unambiguous identification using nuclear magnetic resonance. We highlight the potential of this method for accurately identifying plant-based toxins present on archaeological artefacts and unique (albeit non-toxic) chemical markers that may allow one to infer the presence of toxic plant ingredients in arrow poisons. Any chemical study of archaeological material should consider the unique environmental degradative factors and be sensitive to the oxidative by-products of toxic compounds.