Browsing by Author "Wapenaar, Korstiaan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Federated learning in the detection of Covid -19 in patient Ct-Scans: A practical evaluation of external generalisation(University of the Witwatersrand, Johannesburg, 2023-08) Wapenaar, Korstiaan; Ranchod, PraveshThis research explores the practical utility of using convolutional neural networks in a federated learning architecture for COVID-19 diagnostics using chest CT-scans, and whether federated learning models can generalise to data from healthcare facilities that did not participate in training. A model that can generalise to these healthcare facilities could provide lower-resourced or over-utilised facilities with access to supplementary diagnostic services. Eleven models are trained using a modified VGG-16. The models are trained using data from five ‘sites’: four sites are single healthcare facilities and the fifth site is a composite of data from a variety of healthcare facilities. Eleven models are trained, evaluated and compared: five ‘independent models’ are each trained with data from a single site; three ‘global models’ are trained using centrally pooled data from a variety of sites; three ‘federated models’ are trained using a federated averaging approach. The site with composite data is held-out and never included in training the federated and global models. With the exception of this composite site, all models achieve a test accuracy of at least 0.93 when evaluated using test data from the sites used in training these models. All models are then evaluated using data from the composite site. The global and federated models achieve a 0.5 to 0.6 accuracy for the composite site, indicating that the model and training regime is unable to achieve useful accuracies for sites non-participant in training. The federated models are therefore not accurate enough to motivate a healthcare facility decision maker to use the federated models as an alternative or supplementary diagnostic tool to radiographers, or to developing their own independent model. Evaluation of the results suggests that high-quality and consistent image pre-processing may be a necessary precondition for the task.