Repository logo
Communities & Collections
All of WIReDSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ndemera, Rudo Hilda"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Estimating rooftop solar energy potential using spatial radiation models and thermal remote sensing: The case of Witwatersrand University
    (University of the Witwatersrand, Johannesburg, 2023) Ndemera, Rudo Hilda; Adem, Ali K.; Adam, Elhadi
    The main purpose of this research was to estimate the University of Witwatersrand building’s rooftop solar energy potential using the GIS-based solar Area Solar Radiation (ASR) analyst upward hemispherical view shed algorithm. The two major datasets used in this research for rooftop solar energy potential modelling are building footprint data and the Digital Surface Model. Building footprint data, specifically rooftop area was extracted using machine learning CNTK unified toolkit and deep neural networks. The data was presented as individual polygon shape files for each building. The high-resolution Digital Surface Model imagery was sourced from the Advanced Land Observation Satellite. Pre-processing of the imagery was done for atmospheric correction. The DSM was then used in the Area Solar Radiation model to create an upward view shed for every point on the study area which is essential for computing solar radiation maps. The efficiency of using this algorithm is that it considers the shading effects caused by surrounding topography and surrounding man-made features, alterations in the azimuth angle and the position of the sun. Apart from the incoming solar radiation reaching the rooftops, the elevation and orientation of the rooftop cells limit the solar panel tilt angle and intensity of the incoming solar radiation, respectively. These factors were used in setting the suitability criteria together with solar radiation for the identification of suitable rooftop cells in this research. The relationship between land surface temperature and solar radiation values was assessed to determine if it can be used as an indicator for solar panel efficiency. Results from this research indicate that the University of Witwatersrand receives high levels of incoming solar radiation and has a high solar energy rooftop generation capacity that can meet the energy demand on campus. To improve accuracy of the research results, a drone could have been used to measure insolation across the study area to improve the spatial resolution. However, this was not possible due to various restrictions.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify