Repository logo
Communities & Collections
All of WIReDSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Knopfmacher, A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Compositions with a fixed number of inversions
    (Springer, 2018-05) Knopfmacher, A.; Mays, M. E.; Wagner, S.
    A composition of the positive integer n is a representation of n as an ordered sum of positive integers n = a1 + a2 + ··· + am. There are 2n−1 unrestricted compositions of n, which can be sorted according to the number of inversions they contain. (An inversion in a composition is a pair of summands {ai, aj} for which i aj .) The number of inversions of a composition is an indication of how far the composition is from a partition of n, which by convention uses a sequence of nondecreasing summands and thus has no inversions. We count compositions of n with exactly r inversions in several ways to derive generating function identities, and also consider asymptotic results.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify