Browsing by Author "Bouchet, Florian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The inner craniodental anatomy of the Papio specimen U.W. 88-886 from the Early Pleistocene site of Malapa, Gauteng, South Africa(Evolutionary Studies Institute, 2019-04) Bouchet, Florian; Ribéron, Alexandre; Heaton, Jason L.; Hoffman, Jakobus; Bam, Lunga; Jakata, Kudakwashe; Tawane, Mirriam; Tenailleau, Christophe; Zipfel, Bernhard; Beaudet, AmélieCercopithecoids represent an essential component of the Plio-Pleistocene faunal assemblage. However, despite the abundance of the cercopithecoid fossil remains in African Plio-Pleistocene deposits, the chronological and geographic contexts from which the modern baboons (i.e. Papio hamadryas ssp.) emerged are still debated. The recently discovered Papio (hamadryas) angusticeps specimen (U.W. 88-886) from the Australopithecus sediba-bearing site of Malapa, Gauteng, South Africa, may represent the first modern baboon occurrence in the fossil record. Given the implication of U.W. 88-886 for the understanding of the papionin evolutionary history and the potential of internal craniodental structures for exploring evolutionary trends in fossil monkey taxa, we use X-ray microtomography to investigate the inner craniodental anatomy of this critical specimen. Our goal is to provide additional evidence to examine the origins of modern baboons. In particular,we explore (i) the tissue proportions and the dentine topographic distribution in dental roots and (ii) the endocranial organization. Consistent with the previous description and metrical analyses of its external cranial morphology, U.W. 88-886 shares internal craniodental anatomy similarities with Plio-Pleistocene and modern Papio, supporting its attribution to Papio (hamadryas) angusticeps. Interestingly, average dentine thickness and distribution in U.W. 88-886 fit more closely to the extinct Papio condition, while the sulcal pattern and relative dentine thickness are more like the extant Papio states. Besides providing additional evidence for characterizing South African fossil papionins, our study sheds new light on the polarity of inner craniodental features in the papionin lineage.Item The Miocene primate Pliobates is a pliopithecoid(Nature Research, 2024-04) Amélie Beaudet; Zanolli, Clément; Urciuoli, Alessandro; Almécija, Sergio; Fortuny, Josep; Robles, Josep M.; Bouchet, Florian; Moyà-Solà, Salvador; Alba, David M.The systematic status of the small-bodied catarrhine primate Pliobates cataloniae, from the Miocene (11.6 Ma) of Spain, is controversial because it displays a mosaic of primitive and derived features compared with extant hominoids (apes and humans). Cladistic analyses have recovered Pliobates as either a stem hominoid or as a pliopithecoid stem catarrhine (i.e., preceding the cercopithecoid–hominoid divergence). Here, we describe additional dental remains of P. cataloniae from another locality that display unambiguous synapomorphies of crouzeliid pliopithecoids. Our cladistic analyses support a close phylogenetic link with poorly-known small crouzeliids from Europe based on (cranio)dental characters but recover pliopithecoids as stem hominoids when postcranial characters are included. We conclude that Pliobates is a derived stem catarrhine that shows postcranial convergences with modern apes in the elbow and wrist joints—thus clarifying pliopithecoid evolution and illustrating the plausibility of independent acquisition of postcranial similarities between hylobatids and hominids.