Repository logo
Communities & Collections
All of WIReDSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Faculty of Science
  3. School of Physics
  4. Browse by Author

Browsing by Author "Abdalgabar, Ammar"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Large A without the desert
    (Springer, 2014-07-31) Abdalgabar, Ammar; Cornell, Alan S.; Deandrea, Aldo; McGarrie, Moritz
    Even if the unification and supersymmetry breaking scales are around 106 to 109 TeV, a large A t coupling may be entirely generated at low energies through RGE evolution in the 5D MSSM. Independent of the precise details of supersymmetry breaking, we take advantage of power law running in five dimensions and a compactification scale in the 10 − 103 TeV range to show how the gluino mass may drive a large enough A t to achieve the required 125.5 GeV Higgs mass. This also allows for sub-TeV stops, possibly observable at the LHC, and preserving GUT unification, thereby resulting in improved naturalness properties with respect to the four dimensional MSSM. The results apply also to models of “split families” in which the first and second generation matter fields are in the bulk and the third is on the boundary, which may assist in the generation of light stops whilst satisfying collider constraints on the first two generations of squarks.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify