The influence of continuous casting parameters on hot tensile behaviour in low carbon, niobium and boron steels

Date
2009-02-26T11:27:28Z
Authors
Chown, Lesley H.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Abstract This thesis studies the factors that govern transverse cracking during continuous casting of low carbon, niobium microalloyed and boron microalloyed steels. Crack susceptibility in the thick slab, billet and thin slab casting processes are compared by using typical conditions in laboratory hot ductility tests. There is limited published literature on hot ductility in aluminium-killed and siliconkilled boron microalloyed steels and the proposed mechanisms of failure by transverse cracking are contradictory. Few published papers specifically compare hot ductility behaviour of any steels between thick slab, billet and thin slab continuous casting processes. Thus, the basis of this research is to assess the influence of casting parameters and compositional variations on hot ductility behaviour in low carbon steels, niobium microalloyed steels, aluminium-killed boron microalloyed steels and silicon-killed, boron microalloyed steels. The typical temperature ranges, cooling rate and strain rate conditions of the continuous casting processes were used in reheated and in situ melted hot tensile tests performed on steel specimens. Solidification, transformation and precipitation temperatures were calculated using solubility equations and modelled using the Thermo-CalcTM thermodynamics program. Scanning electron microscopy and transmission electron microscopy were used to determine the modes of failure in the tested specimens. In the low carbon steels, hot ductility was improved by increasing the strain rate; by calcium treatment, which minimises copper sulphide and iron sulphide formation; and by maintaining a nickel to copper ratio of 1:1. It was shown that thin slab casting conditions provided the best hot ductility results for the low carbon steels. All the niobium steels showed poor ductility in the single-phase austenite temperature region, indicating that intergranular precipitation of fine niobium carbonitrides was the cause of the poor ductility. It was shown that the hot ductility was greatly improved by calcium treatment, by decreasing the cooling rate and by increasing the strain rate. Slow iv thin slab and thick slab casting conditions provided the best hot ductility results for the niobium steels. Hot ductility was substantially improved in the aluminium-killed boron steels by increasing the boron to nitrogen ratio from 0.19 to 0.75. The results showed that, at cooling rates generally associated with thick slab, bloom and slow thin slab casting, a boron to nitrogen ratio of ≥0.47 was sufficient to avoid a ductility trough altogether. However, under conditions typically experienced in fast thin slab and billet casting, a boron to nitrogen ratio of 0.75 was required to provide good hot ductility. The mechanism of the ductility improvement with increasing boron to nitrogen ratio was found to be enhanced precipitation of boron nitride, leading to a decrease in nitrogen available for aluminium nitride precipitation. In the silicon-killed boron steels, it was found that the boron to nitrogen ratio had the overriding influence on hot ductility and hence on crack susceptibility. Excellent hot ductility was found for boron to nitrogen ratios above 1. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly at manganese to sulphur ratios below fourteen. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was determined as a tool to predict scrap levels in the casting plant.
Description
Keywords
steel, hot ductility, continuous casting, low carbon, niobium, boron, boron nitride, aluminium nitride, sulphides
Citation
Collections