Investigation of electronic properties of high purity synthetic single crystal type IIa diamond for electronic applications

Show simple item record Costa, A.M.O.D. da 2008-06-19T05:21:04Z 2008-06-19T05:21:04Z 2008-06-19T05:21:04Z
dc.description.abstract Abstract A range of di®erent high-quality single crystal diamonds synthesized under high pressure and high temperature (HPHT) conditions have been studied in view of their potential as candidates for specialized electronic devices with emphasis on particle detectors. The studies incorporated a long range of spectroscopic and electronic characterization techniques. Special attention was given to electronic properties and device performance re- lated to the electrical contacts applied, the type and the concentration of impur- ities and the crystallographic defects present. The electronic response of a dia- mond detector as far as impurities are concerned is predominantly determined by the single substitutional nitrogen (SSN) and boron acceptors. Di®erent tech- niques were used to assess the role of such impurities in the diamond crystals stud- ied, as well as to study the dynamics due to the interaction of such impurities with each other (compensation). Hence, the electron spin resonance (ESR) and the current-deep level transient spectroscopy (I-DLTS) techniques were used in this re- spect to extract the information concerning activation energies, nitrogen-boron dy- namics, and the nitrogen and boron concentrations. ii iii It was found that the SSN content was below 1013 cm¡3 with this result giving the approximate concentration of boron acceptors, being the same value as of that of the SSN, or slightly above. Maximum activation energies of boron acceptors were extracted from three di®erent regions in the bulk of the diamond. The values were approximately 0.311 eV § 0.0027 eV in the center region, 0.308 eV § 0.007 eV in the intermediate region and 0.29 eV § 0.007 eV at the edge region, respectively. The maximum activation energy when boron is fully compensated is about 0.37 eV. Properties of ohmic and Schottky contacts as a function of concentration of SSN and boron acceptors were investigated using Current-Voltage characteristic and photo- current measurements. Di®erent surface treatment conditions and di®erent types of diamonds (IIa, IIb and Ib) were used. Electronic properties as a function of contacts were assessed for high purity synthetic type IIa diamond detector, incorporating a time of °ight (TOF) UV laser set-up. The maximum hole collection distance at room temperature was found to be 91.00 cm, the maximum transient time for holes was about 1.00 ms and the e±ciency was approximately 41%, with contacts made of Ti/Pt/Au-Ru. When Ru-Ru contacts are applied, the maximum hole mobility and the velocity were extracted at room temperature to be about 17963.44 cm2V¡1s¡1 and 5.02 £107 cms¡1, respectively, and the e±ciency of the device is about 30%. The maximum applied external electric ¯elds with Ru-Ru contacts were increased to about 1.32 times that at low temperature and to about 1.84 times that at room temperature. iv Large signals generated by ®-particles from 228Th were obtained without using amp- li¯cation. However, a full analysis of the pulse was not possible due to the narrow bandwidth of the electronic probes used. In a detector made of type Ib diamond, with SSN concentrations of about 50 ppm, it was found that regions in the bulk exhibiting better charge collection properties contained small concentrations of uncompensated boron impurity. On the other hand, the di®erence in the concentrations of SSN between the two type Ib diamonds, with about 50 ppm and about 200 ppm of SSN concentrations, respectively, resulted in approximately 70 ps di®erence in the transit time between two detectors made of these diamonds. Keywords: Synthetic diamond, detector, HPHT, type Ib, type IIa, single substitutional ni- trogen, SSN, ESR, ARP, I-DLTS, metallization, uncompensated boron impurity, crystallographic defects, rise and decay times, charge carrier life time, charge carrier mobility, carrier mean free path , charge collection distance, carrier Schubweg. en
dc.format.extent 4406364 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.subject synthetic diamond en
dc.subject detector en
dc.subject HPHT en
dc.subject type Ib en
dc.subject single substitutional nitrogen en
dc.subject SSN en
dc.title Investigation of electronic properties of high purity synthetic single crystal type IIa diamond for electronic applications en
dc.type Thesis en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account