Snow cover analysis for the High Drakensberg through remote sensing: Environmental implications

Date
2008-05-22T11:27:46Z
Authors
Mulder, Nicholas Andrew Maurits
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Snow occurs in the High Drakensberg of southern Africa approximately eight times per annum. Snow cover is frequently captured by Landsat satellite imagery, which provide data for the monitoring of snow cover in other regions of the world. Together with a digital elevation model, repetitive snow cover data are used to analyse the distribution of snow cover in the High Drakensberg study area. The effect that the regional and local topography, latitude, and climatic conditions have on the spatial distribution of snow and the function that temperature, wind, altitude, aspect and slope gradient play in the preservation of snow cover are examined. The results of the spatial study allow for the identification of sites that support the accumulation of snow. Specific active and relict geomorphological features were surveyed and correlated spatially to the contemporary snow cover. Among such features are linear debris ridges on south-facing valley slopes in the High Drakensberg. These appeared similar to glacial features found elsewhere in the world and are thus significant in a long-standing and highly conjectured debate over the validity of possible plateau, cirque and niche glaciation in the region. Late-lying snow cover favours gently sloping south- and southeast-facing aspects at altitudes from 3000 m ASL to just below the highest peaks in the region near 3450 m ASL, above which higher insolation levels on the flat mountain summits provides unfavourable conditions. Snow cover immediately adjacent to the Drakensberg escarpment ablates quickly whilst snow cover at high altitudes in the Lesotho interior experiences better preservation conditions. Latitude has no obvious impact on the distribution of snow cover due to the dominant role of topography in the High Drakensberg other than a limiting of snowfall to regions south of 29°S in late spring. Various synoptic conditions produce snowfall in the region, with cold fronts associated with midlatitude cyclones producing the majority of snow cover. A strong correlation exists between the spatial distribution of snow cover and specific geomorphological features. Observed linear debris ridges are located on slopes that experience frequent contemporary snow cover, lending credence for a glacial origin of the ridges during a period of colder environmental conditions.
Description
Keywords
snow cover, Drakensberg, Lesotho, remote sensing, Landsat, satellite imagery, geomorphology, glaciation, debris ridges
Citation
Collections