Oxygen isotopes suggest elevated thermometabolism within multiple permo-triassic therapsid clades

Show simple item record

dc.contributor.author Rey, K.
dc.contributor.author Amiot, R.
dc.contributor.author Fourel, F.
dc.contributor.author Abdala, F.
dc.contributor.author Fluteau, F.
dc.contributor.author Jalil, N.-E.
dc.contributor.author Liu, J.
dc.contributor.author Rubidge, B.S.
dc.contributor.author Smith, R.M.H.
dc.contributor.author Steyer, J.S.
dc.contributor.author Viglietti, P.A.
dc.contributor.author Wang, X.
dc.contributor.author Lécuyer, C.
dc.date.accessioned 2017-11-02T13:10:16Z
dc.date.available 2017-11-02T13:10:16Z
dc.date.issued 2017-07
dc.identifier.citation Rey, K. et al. 2017. Oxygen isotopes suggest elevated thermometabolism within multiple permo-triassic therapsid clades. eLife 6, Article number e28589. en_ZA
dc.identifier.issn 2050-084X (Online)
dc.identifier.uri http://hdl.handle.net/10539/23362
dc.description.abstract The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (d18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the d18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism. en_ZA
dc.language.iso en en_ZA
dc.publisher eLife Sciences Publications Ltd en_ZA
dc.rights © 2017, Rey, K. et al. This article is distributed under the terms of the Creative Commons Attribution License. en_ZA
dc.subject Oxygen en_ZA
dc.subject Anion exchange en_ZA
dc.subject Anteosaurus en_ZA
dc.subject Article en_ZA
dc.subject Biostratigraphy en_ZA
dc.subject Cladistics en_ZA
dc.subject Criocephalosaurus en_ZA
dc.subject Cynognathus en_ZA
dc.subject Fossil en_ZA
dc.subject Geochemistry en_ZA
dc.subject Glanosuchus en_ZA
dc.subject Lesotho en_ZA
dc.subject Mass spectrometry en_ZA
dc.subject Metabolism en_ZA
dc.subject Moghreberia nmachouensis en_ZA
dc.subject Nonhuman en_ZA
dc.subject Paleontology en_ZA
dc.subject Paracyclotosaurus en_ZA
dc.subject Permian en_ZA
dc.subject Radiometric dating en_ZA
dc.subject Struthiocephalus en_ZA
dc.subject Taxonomy en_ZA
dc.subject Tetrapod en_ZA
dc.subject Thermometabolism en_ZA
dc.subject Xenotosuchus en_ZA
dc.title Oxygen isotopes suggest elevated thermometabolism within multiple permo-triassic therapsid clades en_ZA
dc.type Article en_ZA
dc.journal.volume 6 en_ZA
dc.journal.title eLIFE en_ZA
dc.description.librarian EM2017 en_ZA
dc.citation.doi 10.7554/eLife.28589 en_ZA

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WIReDSpace


My Account