Predicting Global Internet Instability Caused by Worms using Neural Networks

Date
2006-11-16T13:23:16Z
Authors
Marais, Elbert
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Internet worms are capable of quickly propagating by exploiting vulnerabilities of hosts that have access to the Internet. Once a computer has been infected, the worms have access to sensitive information on the computer, and are able to corrupt or retransmit this information. This dissertation describes a method of predicting Internet instability due to the presence of a worm on the Internet, using data currently available from global Internet routers. The work is based on previous research which has indicated a link between the increase in the number of Border Gateway Protocol (BGP) routing messages and global Internet instability. The type of system used to provide the prediction is known as an autoencoder. This is a specialised type of neural network, which is able to provide a degree of novelty for inputs. The autoencoder is trained to recognise “normal” data, and therefore provides a high novelty output for inputs dissimilar to the normal data. The BGP Update routing messages sent between routers were used as the only inputs to the autoencoder. These intra-router messages provide route availability information, and inform neighbouring routers of any route changes. The outputs from the network were shown to help provide an early warning mechanism for the presence of a worm. An alternative method for detecting instability is a rule-based system, which generates alarms if the number of certain BGP routing messages exceeds a prespecified threshold. This project compared the autoencoder to a simple rule-based system. The results showed that the autoencoder provided a better prediction and was less complex for a network administrator to configure. Although the correlation between the number of BGP Updates and global Internet instability has been shown previously, this work presents the first known application of a neural network to predict the instability using this correlation. A system based on this strategy has the potential to reduce the damage done by a worm’s propagation and payload, by providing an automated means of detection that is faster than that of a human.
Description
Student Number : 9607275H - MSc dissertation - School of Electrical and Information Engineering - Faculty of Engineering and the Built Environment
Keywords
neural networks, internet worms, border gateway protocol, autoencoder, instability
Citation
Collections