Implications of N-capping motifs for folding and design of human glutathione transferase A1-1

Show simple item record Little, Tessa 2006-11-16T11:25:15Z 2006-11-16T11:25:15Z 2006-11-16T11:25:15Z
dc.description Student Number : 9306227A - PhD thesis - School of Molecular and Cell Biology - Faculty of Science en
dc.description.abstract It is well documented that N-capping motifs are stabilising local motifs for -helices. N-capping motifs have been identified within hGST A1-1 at the N-terminal ends of -helix 9 and helix 6. The conservational role of these two motifs in protein stability, folding and function was investigated. -Helix 9 is a unique structural feature to class Alpha GSTs that is important for its catalytic functioning. This amphipathic helix is highly dynamic, where upon ligand binding at the active-site, the delocalised C-terminal region becomes immobilised to form a structured helix forming a “lid” over the active-site. The specific role of the Asp N-cap motif toward the stability and dynamics of helix 9 was determined by substituting the Asp-209 for a Gly. ANS binding and urea-induced activity studies showed that by removing the N-cap motif of helix 9 in hGST A1-1, the helix 9 is destabilised rendering a less hydrophobic binding site compared to that in the wild-type. The helical content of the peptide, corresponding to helix 9 in the C-terminal region of hGST A1-1 (208 -222), decreased significantly upon the removal of the N-cap motif. The explanation for the conservation of the Asp N-cap residue can be found in its stabilising role of the C-terminal region of class Alpha GSTs. This stabilising role was however less apparent in context of the protein compared to that in the peptide. Majority of the atomic contacts owing to the stability of helix 9 appear to be governed by non-local tertiary interactions rather than local interactions, such as the N-cap motif. These tertiary interactions are likely to include short and long range contacts between residues on the surface of the protein that are already known to contribute towards the stability of the C-terminal region. In this study, the ligand displacement-studies and the molecular docking results strongly suggest that 8-aniline-1-napthalene sulfonate binds at the H-site in hGST A1-1. The N-capping motif of helix 6 identified in class Alpha GSTs is located within the core of domain 2. This motif is a common feature found amongst almost all GST-like proteins and is thought to be the folding nucleation site (Stenberg et al. J. Biol. Chem. 275 (2000), 10421-10428). The N-cap (Ser- 154) and N3 (Asp-157) residues were each substituted with an Ala in hGST A1-1 to investigate the role of this motif in the folding of hGST A1-1. Both substitutions resulted in thermal sensitive mutants compared to that of the wild-type. The N3 substitution (D157A) was however too disruptive, where the yields of this mutant were insufficient for any further studies to be carried out. For the N-cap mutant (S154A), the unfolding kinetic studies revealed a significantly destabilised core in domain 2 compared to that of the wild-type. The kinetic folding studies monitored by fluorescence spectroscopy, revealed that the N-cap motif contributes to the efficient folding and dimerisation of the subunits, and to a far lesser extent towards the final tight packing and reorganisation of tertiary interactions in hGST A1-1. Since no changes in the burst-phase of S154A was evident compared to that of the wild-type, it seems unlikely that this motif is a folding nucleation site in hGST A1-1. These results do not exclude the possibility that this motif contributes to the rapid formation secondary structure during the burst-phase of folding. Due to the highly conserved region surrounding helix 6 , the role of this motif contributing to the stability of hGST A1-1 could be a general feature for GSTs and GSTlike proteins. In this study, further insight into the mechanism of folding for hGST A1-1 was gained. The hydrophobic core packing surrounding helix 6 occurred as a late folding event, that is during the final packing and reorganisation of tertiary interactions of the protein. The N-cap motif is an important structural feature for the fast folding of domain 2. This N-cap motif is a unique structural feature important for the efficient folding of the monomers, which is exclusive to its role in stabilising helix 6 in hGST A1-1. en
dc.format.extent 17757356 bytes
dc.format.mimetype application/pdf
dc.language.iso en en
dc.subject GST en
dc.subject folding en
dc.subject N-capping en
dc.subject alpha-helix en
dc.subject protein stabilty en
dc.title Implications of N-capping motifs for folding and design of human glutathione transferase A1-1 en
dc.type Thesis en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WIReDSpace


My Account