Quantitative Evaluation of the Carbon Isotopic Labelled Urea Breath Test for the Presence of Helicobacter pylori

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Geyer, Johannes Alwyn
dc.contributor.author
dc.date.accessioned 2006-11-16T07:45:16Z
dc.date.available 2006-11-16T07:45:16Z
dc.date.issued 2006-11-16T07:45:16Z
dc.identifier.uri http://hdl.handle.net/10539/1760
dc.description Faculty of Health Scicence School of Medicine 0100107g johannes.geyer@wits.ac.za en
dc.description.abstract The 14C and 13C labelled urea breath tests (UBT) for detecting Helico-bacter pylori infection are well established but scope for improvement exists in both to reduce some of their shortcomings. For this study, the 14C UBT investigation focussed on reducing the quantity of radioactive tracer that is administered to the subject un-dergoing this test, with the aim of lowering the radiation dose to the patient, reducing the impact to the environment and exempting the test from radioactive materials licensing. Wider acceptance, availabil-ity, affordability to lower socio-economic groups and third party medi-cal treatment payers and using readily available equipment were fac-tors considered when developing the method. The principle of the method developed is to collect larger volume breath sample, quantitatively absorbing a defined volume of extracted breath CO2 in an efficient CO2 trapping agent using a specifically de-signed apparatus and measuring the activity with a low background β-spectrometer. A reduction in the quantity of 14C labelled urea administered to the pa-tient was achieved. The method also reduced the counting error mar-gin at a lower detection limit, improving discrimination between H. py-lori positive and negative patients. iii The 13C UBT is a non-radioactive test however, it is substantially more expensive. The 13C UBT investigation aimed to determine whether commercially available un-enriched urea could be used thus reducing the cost of the 13C UBT. A simple protocol with Isotope Ratio Mass Spectrometry (IRMS) for the measurement was used as opposed to the well-established 13C UBT protocol. The principle of the 13C UBT investigation was to detect the change of the breath δ13C (13C/12C) ratio after the administration of un-enriched urea with a δ13C different to the exhaled breath. Theoretical calculations showed that an administered dose of 500mg un-enriched urea with at least a 10‰ δ13C difference may be detectable using IRMS. In vitro investigations confirmed that levels of 0.01 to 0.001‰ δ13C were detectable by IRMS. A change in the δ13C of a standard breath CO2 was confirmed for a range between 0.14 to 50% v/v mixed CO2 samples, i.e. the projected range for in-vivo investigation. Results from the in-vivo investigation however were not able to distinguish positive from negative H. pylori patients. The use of the 1000mg dose of urea appears to have caused saturation of the enzyme. It was con-cluded that some enrichment of the 13C is necessary or less urea be used. en
dc.format.extent 769536 bytes
dc.format.extent 1406379 bytes
dc.format.extent 43866 bytes
dc.format.mimetype application/msword
dc.format.mimetype application/pdf
dc.format.mimetype application/pdf
dc.language.iso en en
dc.subject Urea Breath Test en
dc.subject Helicobacter Pylori en
dc.subject Gastro-instestinal disease en
dc.subject Peptie ulcer en
dc.title Quantitative Evaluation of the Carbon Isotopic Labelled Urea Breath Test for the Presence of Helicobacter pylori en
dc.type Thesis en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WIReDSpace


Browse

My Account

Statistics