Gaolatlhe, Lesego2025-06-242024-07Gaolatlhe, Lesego. (2024). Synthesis and electrochemical properties of high-entropy spinel oxides, cobalt atomic clusters and zinc oxide as electrode materials for rechargeable zinc-air batteries. [PhD thesis, University of the Witwatersrand, Johannesburg]. WIReDSpace.https://hdl.handle.net/10539/45239A thesis presented in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry, to the Faculty of Science, School of Chemistry, University of the Witwatersrand, Johannesburg, 2024.This thesis investigated cathode and anode electrode materials for application in rechargeable zinc-air battery (RZAB). Two types of cathode materials were strategically studied in RZAB applications: (a) cobalt carbon composites of (i) cobalt atomic clusters (Co AC@CBPDC) and (ii) cobalt nanoparticles (Co NP@CBPDC), and (b) high-entropy spinel oxide (HESOx, containing five transition metals – Cu, Mn, Fe, Ni, and Co). The activities of these materials toward oxygen reduction reaction (ORR and oxygen evolution reaction (OER) were investigated in both half- and full-cell configurations as a proof-of-concept in RZAB cells in alkaline electrolyte. Considering that conventional zinc plate has several short-comings as an anode for RZAB, a new material, polydopamine-derived carbon-coated zinc oxide (ZnO@PDA-DC), was also synthesised and applied in RZAB as a possible alternative anode to the popular zinc plate. First, Co AC@CBPDC and Co NP@CBPDC were prepared using the metal-organic framework (MOF) route through the microwave-assisted solvothermal method and acid treatment. From the XRD results, the spectra showed dominant {111} and {200} phases, characteristic of metallic cobalt with a face-centred cubic (fcc). There were trace amounts of CoO observed indicating the coexistence of Co/CoO. From TEM imaging, Co AC@CBPDC was highly defective with a visible porous carbon structure than its counterpart (Co NP@CBPDC) and showed dispersed atomic clusters. BET data showed that Co AC@CBPDC had a higher surface area (144.8 m2/g) than the Co NP@CBPDC (33.25 m2/g). The improved physicochemical merits of the Co AC@CBPDC allowed for better ORR and OER activities than the Co NP@CBPDC in terms of low halfway potential (E1/2), onset potential (Eonset), overpotential at 10 mA/cm2 (ƞ10), potential gap (∆E) between the overpotential of OER and the halfway potential, and a higher kinetic current density (jk). The enhanced electrochemistry of the Co AC@CBPDC was attributed to the defects created by the acid treatment. As proof of real-life applicability, the Co AC@CBPDC electrocatalyst delivered an excellent air cathode in a parallel plate RZAB cell with notable OCV (1.23 V), peak power density (49.9 mW/cm2), a real energy density (477 mAh/cm2), long-term stability for 210 h, enhanced voltage retention, Coulombic efficiency (ca. 100 %) and DOD (51.3%), comparable to literature. In addition, an all-solid-state RZAB based on the Co AC@CBPDC catalyst gave a higher and constant OCV (1.73 V) at varied bending angles (0 – 180 degrees) and excellent stability. Second, new HESOx materials were prepared via the Pechini method at two different annealing temperatures of 500 and 750 oC (abbreviated herein as HESOx-500 and HESOx-750). P-XRD results showed that these are inverse spinel oxides, with {311} as the dominant phase. HR-TEM images proved that they are single nanocrystalline materials. XRD and BET data showed that the HESOx-500 is smaller in size, more porous, and has a higher surface area than its counterpart (HESOx-750). HESOx-500 showed superior ORR performance with an onset potential of 0.93 V and a E1/2 of 0.88 mV. The OER performance also showed improved ƞ10 compared to IrO2 with an overpotential of 340 mV at a current density of 10 mA/cm2, and a 45 ± 5.0 mV/dec Tafel slope, above the performance of IrO2 (66 ± 6.1 V/dec). The ∆E of HESOx-500 was 0.69 V. The material was further tested as a cathode material in a RZAB cell. The optimised RZAB cell showed remarkable performance with a theoretical potential of 1.67 V and long-term stability of 375 h at 10 mA/cm2. The performance was attributed to the high-entropy compositional design with a high number of surface oxygen vacancies and different metal oxidation states. Finally, having dealt with the issue of bifunctionality in RZAB, a new ZnO@C anode material was also considered. The ZnO@PDA-DC (where PDA-DC means polydopamine-derived carbon) was used due to its ability to form Zn2+ pathways. Electrochemical potentiodynamic polarisation tests were performed to understand and compare the corrosion inhibition effects in an alkaline medium (6 M KOH). The ZnO@PDA-DC showed better corrosion inhibition properties than the zinc plate and other samples: low corrosion current (icorr = 0.107 uA/cm2) and corrosion potential (Ecorr = 1.077 V), and a mixed inhibition effect, indicating reduced hydrogen evolution reaction and zinc dissolution. Due to the excellent corrosion inhibition properties of the ZnO@PDA-DC, it was then evaluated in the RZAB cell. The shallow galvanostatic charge-discharge cycle stability at 2 mA/cm2 was able to maintain 150 h in a RZAB at a voltage gap of 0.76 V to 0.80 V. The results demonstrated that enhanced rechargeability is possible with ZnO@PDA-DC for RZAB.en©2024 University of the Witwatersrand, Johannesburg. All rights reserved. The copyright in this work vests in the University of the Witwatersrand, Johannesburg. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of University of the Witwatersrand, Johannesburg.Co-MOFCobalt carbon compositesAtomic nanoclustersCo nanoparticlesHigh entropy spinel oxidesBifunctional catalystOxygen evolution reaction (OER)Oxygen reduction reaction (ORR)Zinc anodeZinc oxideLinear polarisation resistance (LPR)Rechargeable Zinc-air battery (RZAB)Flexible Zinc-air batteryUCTDSynthesis and electrochemical properties of high-entropy spinel oxides, cobalt atomic clusters and zinc oxide as electrode materials for rechargeable zinc-air batteriesDissertationUniversity of the Witwatersrand, JohannesburgSDG-9: Industry, innovation and infrastructureSDG-13: Climate action